• Title/Summary/Keyword: Geometrical Design

Search Result 916, Processing Time 0.026 seconds

A Study on Embroidered Figures of Miao's Traditional Costume Guizhou Province in China (중국 귀주성(貴州省) 묘족(苗族)의 복식에 나타난 문양의 특성에 관한 연구)

  • Kim, Young-Sin
    • Fashion & Textile Research Journal
    • /
    • v.4 no.1
    • /
    • pp.31-39
    • /
    • 2002
  • The analysis revealed that the pattern represent the function of written language, the Miao's idea of nature as tie object of worship and exorcism, and their primitive thinking. The patterns are chiefly embroidered collars, shoulders of blouse, waist blind and hem lines of skirt. The design of patterns are animals and plants and geometrical figured. Most of patterns are dragon, fishes, birds, butterflies, which are liked by the Miao people. The patterns are highly imaginative and true to life, and are made with strong national and popular features.

Numerical Investigation on the Water Discharge Capability of Tidal Power Plant Using CFD (CFD를 사용한 조력발전소 수문의 통수성능 연구)

  • Kim, Gunwoo;Oh, Sangho;Han, Insuk;Ahn, Sukjin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.161-161
    • /
    • 2011
  • The design methodology of the sluice caisson structure is one of important factor that is closely related to the efficiency in tidal power generation. When the sluice caisson is designed to maximize the water discharge capability, it is possible to minimize the number of sluice caissons for attaining the water amount required for achieving the target power generation, which results in reduction of the construction cost for the sluice caisson structure. The discharge capability of sluice caisson is dependent on the geometrical conditions of an apron structure which is placed in both sides of the sluice caisson. In this study, we investigated numerically the variation of water discharge capability of sluice caisson according to the geometrical conditions of apron. Flow fields are simulated with FLOW-3D software using VOF method.

  • PDF

The Effect of Geometrical Structure on the Heat Transfer of Insulating Nonwovens: A Comparison of Single and Double Layered Nonwovens (보온용 부직포의 구조적 특성이 열전달에 미치는 영향: 단층구조와 이층구조 부직포의 비교)

  • Kim, Hee-Sook
    • Korean Journal of Human Ecology
    • /
    • v.7 no.2
    • /
    • pp.113-119
    • /
    • 1998
  • The purpose of this study was to investigate the effect of geometrical structure on the heat transfer of insulating nonwovens. Commercially available single and double layered polyester nonwovens have used. Thermal conductivity, k and thermal conductance, h were measured by using a constant temperature sandwich type device at dry and wet state. The results obtained were as follows: 1. Double layered nonwovens showed slightly lower thermal conductance and higher warmability than single layered nonwovens. 2. As moisture regain increased, double layered nonwovens showed higher increasing rate of thermal conductivity than single layered nonwovens.

  • PDF

Parametric study on probabilistic local seismic demand of IBBC connection using finite element reliability method

  • Taherinasab, Mohammad;Aghakouchak, Ali A.
    • Steel and Composite Structures
    • /
    • v.37 no.2
    • /
    • pp.151-173
    • /
    • 2020
  • This paper aims to probabilistically evaluate performance of two types of I beam to box column (IBBC) connection. With the objective of considering the variability of seismic loading demand, statistical features of the inter-story drift ratio corresponding to the second, fifth and eleventh story of a 12-story steel special moment resisting frames are extracted through incremental dynamic analysis at global collapse state. Variability of geometrical variables and material strength are also taken into account. All of these random variables are exported as inputs to a probabilistic finite element model which simulates the connection. At the end, cumulative distribution functions of local seismic demand for each component of each connection are provided using histogram sampling. Through a parametric study on probabilistic local seismic demand, the influence of some geometrical random variables on the performance of IBBC connections is demonstrated. Furthermore, the probabilistic study revealed that IBBC connection with widened flange has a better performance than the un-widened flange. Also, a design procedure is proposed for WF connections to achieve a same connection performance in different stories.

Towards Designing Environmentally Stable Conjugated Polymers with very Small Band-Gaps

  • Hong, Sung Y.;Kim, Sung C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1649-1654
    • /
    • 2003
  • We have investigated substituent effect on the stabilization energies, and nucleus-independent chemical shifts of pentafulvalenes and on the electronic structures of the corresponding polypentafulvalenes to design environmentally stable semiconductive or conductive polymers. Geometrical optimizations of the molecules were carried out at the density functional level of theory with B3LYP hybrid functional and 6-311+G(d) basis set. Stabilization energies were estimated using isodesmic and homodesmotic reactions. As a criterion of aromaticity nucleus-independent chemical shifts of the molecules were computed using GIAO approach. For the polymers the geometrical parameters were optimized through AM1 band calculations and the electronic structures were obtained through modified extended Huckel band calculations. It is found that strong electronwithdrawing substituents increase isodesmic and homodesmotic stabilization energies of pentafulvalene, though it does not increase the aromaticity. Nitro-substituted pentafulvalene is estimated to have stabilization energy as much as azulene. However, substitution either with electron-donating groups or with electronwithdrawing groups does not significantly affect the electronic structures of polypentafulvalene and poly (vinylenedioxypentafulvalene).

Design of Rogowski coil to improve of current measurement sensitivity (전류측정감도 개선을 위한 로고우스키 코일의 설계)

  • Park, J. N.;Lee, C.;Jang, Y. M.;Kang, S. H.;Lim, K. J.;Na, D. H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.609-612
    • /
    • 2001
  • Rogowski coil is made having no ferromagnetic material in a core. So the coil cannot be driven into saturation. This result in that Rogowski coils may be calibrated at relatively low currents, and used with confidence at very high currents. However the lowest level of current that can be measured is limited by the sensitivity of the voltage measuring instrument and system noise. Therefore, geometrical effects were investigated in order to measure high sensitivity of low level current and the significant source of error wa examined as well. n the results, the source of error was associated with coil designs, i.e. shape and uniformity of coil and a geometrical location of current source inside and outside of the Rogowski coil.

  • PDF

Free vibration of AFG beams with elastic end restraints

  • Bambaeechee, Mohsen
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.403-432
    • /
    • 2019
  • Axially functionally graded (AFG) beams are a new class of composite structures that have continuous variations in material and/or geometrical parameters along the axial direction. In this study, the exact analytical solutions for the free vibration of AFG and uniform beams with general elastic supports are obtained by using Euler-Bernoulli beam theory. The elastic supports are modeled with linear rotational and lateral translational springs. Moreover, the material and/or geometrical properties of the AFG beams are assumed to vary continuously and together along the length of the beam according to the power-law forms. Accordingly, the accuracy, efficiency and capability of the proposed formulations are demonstrated by comparing the responses of the numerical examples with the available solutions. In the following, the effects of the elastic end restraints and AFG parameters, namely, gradient index and gradient coefficient, on the values of the first three natural frequencies of the AFG and uniform beams are investigated comprehensively. The analytical solutions are presented in tabular and graphical forms and can be used as the benchmark solutions. Furthermore, the results presented herein can be utilized for design of inhomogeneous beams with various supporting conditions.

Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel

  • Dash, Sushmita;Mehar, Kulmani;Sharma, Nitin;Mahapatra, Trupti Ranjan;Panda, Subrata Kumar
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.55-67
    • /
    • 2019
  • The finite solutions of deflection and the corresponding in-plane stress values of the graded sandwich shallow shell structure are computed in this research article via a higher-order polynomial shear deformation kinematics. The shell structural equilibrium equation is derived using the variational principle in association with a nine noded isoprametric element (nine degrees of freedom per node). The deflection values are computed via an own customized MATLAB code including the current formulation. The stability of the current finite element solutions including their accuracies have been demonstrated by solving different kind of numerical examples. Additionally, a few numerical experimentations have been conducted to show the influence of different design input parameters (geometrical and material) on the flexural strength of the graded sandwich shell panel including the geometrical configurations.

Effects of geometrical parameters on the degree of bending in two-planar tubular DYT-joints of offshore jacket structures

  • Hamid Ahmadi;Mahdi Ghorbani
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.97-121
    • /
    • 2023
  • Through-the-thickness stress distribution in a tubular member has a profound effect on the fatigue behavior of tubular joints commonly found in steel offshore structures. This stress distribution can be characterized by the degree of bending (DoB). Although multi-planar joints are an intrinsic feature of offshore tubular structures and the multi-planarity usually has a considerable effect on the DoB values at the brace-to-chord intersection, few investigations have been reported on the DoB in multi-planar joints due to the complexity of the problem and high cost involved. In the present research, data extracted from the stress analysis of 243 finite element (FE) models, verified based on available parametric equations, was used to study the effects of geometrical parameters on the DoB values in two-planar tubular DYT-joints. Parametric FE study was followed by a set of nonlinear regression analyses to develop six new DoB parametric equations for the fatigue analysis and design of axially loaded two-planar DYT-joints.

A Study on the Patterns of Baekje Accessories (백제 장신구의 문양 분석)

  • Suh, Mi-Young
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.8
    • /
    • pp.13-29
    • /
    • 2008
  • This study analyzes the patterns of Baekje accessories, including pattern kinds, symbolic meanings and pattern types. And also this study shows the characteristics of accessory patterns and gives a chance for reflecting upon the patterns of Baekje costume. This study is qualitative research using documentary records related with the accessories of Baekje and evacuated data. The results of the study are as the followings: First, the kinds of patterns were classified four groups, floral, animal, geometrical and other patterns. Also, the symbolic meanings of its were authority, prolificacy, longevity and protection against evil spirit. Floral pattern was expressed most frequently. Second, the types of patterns were classified two groups, individual and compound type. Both of them was variously expressed. Third, The major material was copper with gold. Most work techniques were boring and hammering. The patterns were the composition of floral or animal patterns as a main design and geometrical patterns as a section or border design. Forth, the expressive characteristics of Baekje accessory patterns were to prefer floral patterns and to express symmetrical composition of patterns, therefore the patterns of Baekje accessories showed their esthetic sense like elegance, mild, serenity, a sense of stability and the sense of balance. In conclusion, the expressive characteristics of Baekje accessory patterns would be expressed on the Baekje costume.