DOI QR코드

DOI QR Code

Parametric study on probabilistic local seismic demand of IBBC connection using finite element reliability method

  • Taherinasab, Mohammad (Department of Civil and Environmental Engineering, Tarbiat Modares University) ;
  • Aghakouchak, Ali A. (Department of Civil and Environmental Engineering, Tarbiat Modares University)
  • Received : 2019.09.20
  • Accepted : 2020.09.24
  • Published : 2020.10.25

Abstract

This paper aims to probabilistically evaluate performance of two types of I beam to box column (IBBC) connection. With the objective of considering the variability of seismic loading demand, statistical features of the inter-story drift ratio corresponding to the second, fifth and eleventh story of a 12-story steel special moment resisting frames are extracted through incremental dynamic analysis at global collapse state. Variability of geometrical variables and material strength are also taken into account. All of these random variables are exported as inputs to a probabilistic finite element model which simulates the connection. At the end, cumulative distribution functions of local seismic demand for each component of each connection are provided using histogram sampling. Through a parametric study on probabilistic local seismic demand, the influence of some geometrical random variables on the performance of IBBC connections is demonstrated. Furthermore, the probabilistic study revealed that IBBC connection with widened flange has a better performance than the un-widened flange. Also, a design procedure is proposed for WF connections to achieve a same connection performance in different stories.

Keywords

References

  1. 1993. (n.d.). EN 1993-1-8: Eurocode 3: Design of steel structures - Part 1-8: Design of joints : European Committee for Standardisation : Free Download, Borrow, and Streaming : Internet Archive. Retrieved August 5, 2019, from https://archive.org/details/en.1993.1.8.2005
  2. 2016. (2016), Seismic Provisions for Structural Steel Buildings Supersedes the Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341-16 An American National Standard. Retrieved from www.aisc.org
  3. Anderson, J.C. and Linderman, R.R. (1991), Steel beam to box column connections. In University of Southern California, Department of Civil Engineering.
  4. Beena, K., Naveen, K. and Shruti, S. (2017), "Behaviour of bolted connections in concrete-filled steel tubular beam-column joints", Steel Compos. Struct., 25(4), 443-456. https://doi.org/10.12989/scs.2017.25.4.443.
  5. Chen, C.C., Lin, C.C. and Tsai, C.L. (2004), "Evaluation of reinforced connections between steel beams and box columns", Eng. Struct., 26, 1889-1904. https://doi.org/10.1016/j.engstruct.2004.06.017.
  6. Chen, C.C., Chen, S.W., Chung, M.D. and Lin, M.C. (2005), "Cyclic behaviour of unreinforced and rib-reinforced moment connections", J. Constr. Steel Res., https://doi.org/10.1016/j.jcsr.2004.06.005.
  7. Chen, C.C., Lee, J.M. and Lin, M.C. (2003), "Behaviour of steel moment connections with a single flange rib", Eng. Struct., 25(11), 1419-1428. https://doi.org/10.1016/S0141-0296(03)00104-4.
  8. Chen, C.C., Lin, C.C. and Lin, C.H. (2006), "Ductile moment connections used in steel column-tree moment-resisting frames", J. Constr. Steel Res., https://doi.org/10.1016/j.jcsr.2005.11.012.
  9. Chou, C.C. and Wu, C.C. (2007), "Performace evaluation of steel reduced flange plate moment connections", 36(14), 2083-2097. Earthq. Eng. Struct. D., https://doi.org/10.1002/eqe.714
  10. Cornell, C.A., Jalayer, F., Hamburger, R.O. and Foutch, D.A. (2002), "Probabilistic Basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines", J. Struct. Eng., 128(4), 526-533. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(526).
  11. Der Kiureghian, A. (n.d.), First-and second-order reliability methods. CRC Press Boca Raton, FL.
  12. Der Kiureghian, A., Lin, H. and Hwang, S. (1987), "Second-Order Reliability Approximations", J. Eng. Mech., 113(8), 1208-1225. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:8(1208).
  13. Dessouki, A.K., Yousef, A.H. and Fawzy, M.M. (2014), "Stiffener configurations of beam to concrete-filled tube column connections", Steel Compos. Struct., 17(1), 83-103. https://doi.org/10.12989/scs.2014.17.1.083.
  14. Det Norske Veritas. (2003), Hovik, Norway: http://www.dnv.com/software/products/sesam. PROBAN.
  15. Ditlevsen, O. and Madsen, H. (1996a), Structural reliability methods. Retrieved from http://chodor-projekt.net/wp-content/uploads/BiNSK/Literatura/Dilevsen,Madsen, Structural Reliability Methods (2007).pdf.
  16. Ditlevsen, O. and Madsen, H. (1996b), Structural reliability methods. New York (NY): Wiley.
  17. Ebrahimi, S. and Zahrai, S. (2019), "Numerical study on force transfer mechanism in through gusset plates of SCBFs with HSS columns & beams", Steel Compos. Struct., 31(6), 541-558. https://doi.org/10.12989/scs.2019.31.6.541.
  18. El-Tawil, S. (1998), Strength and ductility of FR welded-bolted connections. Sacramento Calif.: SAC Joint Venture.
  19. Faella, C. and Piluso, V.R.G. (1999), Structural steel semirigid connections: theory, design, and software (Vol. 21),CRC press.
  20. FM, M., Piluso, V. and Rizzano, G. (1999), "Influence of random material variability on the moment capacity of beam-to-column joints", Proceedings of the Conference Eurosteel, 483-486.
  21. Frangopol, D.M. and Moses, F. (1994), Reliability-Based Structural Optimization. In chapter: Advances in Design Optimization (H. Adeli, Ed.). London: Chapman & Hall.
  22. Ghobadi, M.S., Ghassemieh, M., Mazroi, A. and Abolmaali, A. (2009), "Seismic performance of ductile welded connections using T-stiffener", J. Constr. Steel Res., https://doi.org/10.1016/j.jcsr.2008.05.007.
  23. Girao Coelho, A.M., Bijlaard, F.S.K. and Simoes da Silva, L. (2004), "Experimental assessment of the ductility of extended end plate connections", Eng. Struct., https://doi.org/10.1016/j.engstruct.2000.09.001.
  24. Gupta, A. and Krawinkler, H. (1999), "Seismic Demands for Performance Evaluation of Steel Moment Resisting Frame Structures. Technical Report 132, The John A. Blume Earthquake Engineering Research Center, Department of Civil Engineering, Stanford University, Stanford, CA. Retrieved from http://blume.stanford.edu.
  25. Haldar, A. and Mahadevan, S. (2000), Reliability assessment using stochastic finite element analysis.
  26. Hancock, J.W. and Mackenzie, A.C. (1976), "On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states", J. Mech. Phys. Solids, https://doi.org/10.1016/0022-5096(76)90024-7
  27. Haukaas, T., Hahnel, A., Sudret, B., Song, J. and Franchin, P. (2003), http://www.ce.berkeley.edu/ haukaas/ferum/ferum.html. FERUM. Department of Civil and Environmental Engineering, University of California, Berkeley, CA.
  28. Haukaas, T. and Der Kiureghian, A. (2007). "Methods and object-oriented software for FE reliability and sensitivity analysis with application to a bridge structure", J. Comput. Civil Eng., 21(3), 151-163. https://doi.org/10.1061/(ASCE)0887-3801(2007)21:3(151).
  29. Hedayat, A.A., Saffari, H. and Mousavi, M. (2013), "Behavior of steel reduced beam web (RBW) connections with arch-shape cut", Adv. Struct. Eng., 16(10), 1645-1662. https://doi.org/10.1260/1369-4332.16.10.1645.
  30. HKS. (2014), ABAQUS User's Manual Version 6.14. Hibbit, Karlsson & Sorensen Inc: 1080 Main Street, Pawtucket, RI 02860.
  31. Ibarra, L.F. and Krawinkler, H. (2005), Global collapse of frame structures under seismic excitations. Report No. 2005/05 PEER, Uni. of California at Berkeley, Berkeley, California, 29-51.
  32. Ibarra, L.F., Medina, R.A. and Krawinkler, H. (2005), "Hysteretic models that incorporate strength and stiffness deterioration", Earthq. Eng. Struct. D., 34(12), 1489-1511. https://doi.org/10.1002/eqe.495.
  33. IfM. (2003). Innsbruck, Austria: http://mechanik.uibk.ac.at/softwaredevelopment. COSSAN and ISPUD.
  34. Kaufmann, E.J. (1997), Dynamic tension tests of simulated moment resisting frame weld joints.
  35. Kim, T., Whittaker, A., Gilani, A. and Bertero, V. (2000), Cover-plate and flange-plate reinforced steel moment-resisting connections. Report No. PEER 2000/07, Berkeley, Calif.: Pacific Earthquake Engineering Research Center, University of California at Berkeley.
  36. Kuwamura, H. (1997), "Transition between fatigue and ductile fracture in steel", J. Struct. Eng., 123(7), 864-870. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(864).
  37. Lee, K.H., Goel, S.C. and Stojadinovic, B. (1998), Boundary effects in welded steel moment connections. UMCEE 97-20. Ann Arbor, Mich.: Department of Civil and Environmental Engineering, University of Michigan at Ann Arbor. Retrieved from http://adsabs.harvard.edu/abs/1998PhDT. 230L.
  38. Lignos, D. (2009). Sidesway collapse of deteriorating structural systems under seismic excitations. Rep.No.TB 172, The John A. Blume Earthquake Engineering Research Center, Stanford University, Stanford, CA.
  39. Lignos, D.G. and Krawinkler, H. (2007), "A Database in Support of Modeling of Component Deterioration for Collapse Prediction of Steel Frame Structures", Structural Engineering Research Frontiers.
  40. Lignos, D.G. and Krawinkler, H. (2010), "Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading", J. Struct. Eng., 137(11), 1291-1302. https://doi.org/10.1061/(asce)st.1943-541x.0000376.
  41. Liu, P.L. and Kiureghian, A. (1986), "Multivariate distribution models with prescribed marginals and covariances", Probabilist. Eng.Mech., 1(2), 105-112. https://doi.org/10.1016/0266-8920(86)90033-0
  42. Liu, P., Lin, H. and Kiureghian, A. Der. (1989), CalREL user manual.
  43. Ma, H. and Wang, J. (2019), "Experimental study of the behavior of beam-column connections with expanded beam flanges", Steel Compos. Struct., 31(2), 149-158. https://doi.org/10.12989/scs.2019.31.2.149.
  44. Mahadevan, S. (1997), Monte Carlo simulation: reliability-based mechanical design. Marcel Dekker.
  45. Mahsuli, M. and Haukaas, T. (2012), "Computer program for multimodel reliability and optimization analysis", J. Comput. in Civil Eng., https://doi.org/10.1061/(asce)cp.1943-5487.0000204.
  46. McKenna, F. (2011), "OpenSees: A framework for earthquake engineering simulation", Comput. Sci. Eng., https://doi.org/10.1109/MCSE.2011.66
  47. Melchers, R. and Beck, A. (1999), Structural reliability analysis and prediction.
  48. Melchers, R.E. (1989), "Importance sampling in structural systems", Struct, Saf., 6(1), 3-10. https://doi.org/10.1016/0167-4730(89)90003-9.
  49. MH., F. (2001), Lecture notes on risk and reliability in civil engineering. switzerland: Swiss Federal Institute of Technology, ETHZ.
  50. Mirghaderi, S.R., Torabian, S. and Keshavarzi, F. (2010), "I-beam to box-column connection by a vertical plate passing through the column", Eng. Struct., https://doi.org/10.1016/j.engstruct.2010.03.002.
  51. Nikolaidis, E., Ghiocel, D.M. and Singhal, S. (2005), Engineering design reliability handbook, CRC Press.
  52. Nunez, E., Torres, R. and Structures, R.H. (2017), "Seismic performance of moment connections in steel moment frames with HSS columns", Steel Compos. Struct., 25(3), 271-286. https://doi.org/10.12989/scs.2017.25.3.271.
  53. Papadrakakis, M. and Papadopoulos, V. (1995), "A computationally efficient method for the limit elasto plastic analysis of space frames", Comput. Mech., 16(2), 132-141. https://doi.org/10.1007/BF00365867.
  54. PredictionProbe, Inc. (2003), Newport Beach, CA: http://www.predictionprobe.com. UNIPASS.
  55. Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, ANSI/AISC 358-16 ANSI/AISC 358s1-18 An American National Standard. (2016).
  56. Reliability Consulting Programs (2003), Munich, Germany: http://www.strurel.de. STRUREL : COMREL; SYSREL; NASCOM; NASREL.
  57. Rezaifar, O. and Nazari, M. (2017), "Experimental study of rigid beam-to-box column connections with types of internal/external stiffeners", Researchgate. Net, 25(5), 535-544. https://doi.org/https://doi.org/10.12989/scs.2017.25.5.535
  58. Rong, B., You, G. and Zhang, R. (2018), "Experimental and theoretical studies on SHS column connection with external stiffening ring under static tension load", Steel Compos. Struct., 28(2), 167-177. https://doi.org/10.12989/scs.2018.28.2.167.
  59. Sandia National Laboratories. (2003), Albuquerque, NM and Livermore, CA: http://www.sandia.gov. DAKOTA.
  60. Saneei Nia, Z., Mazroi, A., Ghassemieh, M. and Pezeshki, H. (2014). "Seismic performance and comparison of three different I beam to box column joints", Earthq. Eng. Eng. Vib., https://doi.org/10.1007/s11803-014-0275-4.
  61. Schueller, G.I. and Stix, R. (1987), "A critical appraisal of methods to determine failure probabilities", Struct. Saf., 4(4), 293-309. https://doi.org/10.1016/0167-4730(87)90004-X.
  62. Simoes, L., Silva, D.A., Lima, L., Vellasco, P., Andrade, S., Simoes Da Silva, L. and De Andrade, S.A.L. (2001), Experimental behaviour of end-plate beam-to-column joints under bending and axial force. Database reporting and discussion of results. Report on ECCSTC10, Meeting in Ljubljana.
  63. Skejic, D. and Dujmovic, D. (2005), Reliability of semi-rigid beam-to-column welded joints, Master of Science Thesis. Zagreb (Croatia) Faculty.
  64. Skejic, D. and Dujmovic, D. (2008), "Reliability of the bending resistance of welded beam-to-column joints", J. Constr. Steel Res., 64, 388-399. Retrieved from https://www.sciencedirect.com/science/article/pii/S0143974X07001241. https://doi.org/10.1016/j.jcsr.2007.09.003
  65. Southwest Research Institute. (2003), San Antonio, TX: http://www.nessus.swri.org. NESSUS.
  66. Specification for Structural Steel Buildings, ANSI/AISC 360-16 An American National Standard. (2016).
  67. Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling. (2017), ASTM A6/A6M-17. https://doi.org/10.1520/A0006_A0006M-17A
  68. Thompson, S. (1996), Adaptive Sampling. Wiley-Interscience.
  69. Vamvatsikos, D. and Allin Cornell, C. (2002), "Incremental dynamic analysis", 31(3), 491-514. Earthq. Eng. Struct. D., https://doi.org/10.1002/eqe.141.
  70. Weynand, K. (1992), "SERICON-databank on joints in building frames", Proceedings of the 1st COST C1 Workshop.
  71. Whittaker, A., Gilani, A. and Bertero, V. (1998), "Evaluation of pre-Northridge steel moment-resisting frame joints", Struct. Des. Tall Build., 7(4), 263-283. https://doi.org/10.1002/(SICI)1099-1794(199812)7:4<263::AID-TAL118>3.0.CO;2-B.
  72. Whittaker, A., Kim, T. and Stojadinovic, B. (2004), "Seismic performance of US steel box column connections", Proceedings of the 13th World Conference on Earthquake Engineering.