• Title/Summary/Keyword: Geometric Imperfection

Search Result 116, Processing Time 0.023 seconds

Influence of Geometric Initial Imperfection on the First Buckling Time Variation of Cylinder Under Impact Load (충격하중을 받는 원통의 최초좌굴시간의 변동성에 대한 기하학적 초기결함의 영향)

  • 김두기
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.173-183
    • /
    • 1997
  • In this paper a method is suggested for the probabilistic analysis of impact buckling failure time of cylinder with random axisymmetric geometric imperfection under axial impact. Failure is assumed as axisymmetric radial deformation exceeds the given criteria for the first time. For the generation of random geometric initial imperfection, random field theory by mean function and autocorrelation function of geometric imperfection is used. Suggested method is useful for the treatment of the randomness of realistic geometric imperfection and can be used for the structural safety analysis of cylinder considering its effect.

  • PDF

Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection

  • Xu, Jia-Qin;She, Gui-Lin
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.329-337
    • /
    • 2022
  • In this paper, the thermal post-buckling characteristics of functionally graded (FG) pipes with initial geometric imperfection are studied. Considering the influence of initial geometric defects, temperature and geometric nonlinearity, Euler-Lagrange principle is used to derive the nonlinear governing equations of the FG pipes. Considering three different boundary conditions, the two-step perturbation method is used to solve the nonlinear governing equations, and the expressions of thermal post-buckling responses are also obtained. Finally, the correctness of this paper is verified by numerical analyses, and the effects of initial geometric defects, functional graded index, elastic foundation, porosity, thickness of pipe and boundary conditions on thermal post-buckling response are analyzed. It is found that, bifurcation buckling exists for the pipes without initial geometric imperfection. In contrast, there is no bifurcation buckling phenomenon for the pipes with initial geometric imperfection. Meanwhile, the elastic stiffness can significantly improve thermal post-buckling load and thermal post-buckling strength. The larger the porosity, the greater the thermal buckling load and the thermal buckling strength.

Impact Buckling Reliability Analysis of Stiffened Cylinder With Initial Geometric Imperfection (기하학적 초기형상결함을 갖는 보강 원통의 충격좌굴 신뢰성 해석)

  • 김두기
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.735-747
    • /
    • 1996
  • In this paper, buckling reliability analyses of stiffened cylinder with random initial geometric imperfection under axial impact load are performed by the combined response surface method. The effect of random geometric imperfection on the failure probability and reliability is recognized quantitatively. Buckling reliability decreases with the increase of mean value, cov of initial geometric imperfection under the same external load. Buckling probability under impact load is greater than those under static load with the same condition. From the probabilistic characteristics of imapct buckling load, relation between reliability index and safety parameter can be obtained in addition to the relation between load and reliability index. And those results can be used to determine the range of required safety parameter and acceptable imperfaction.

  • PDF

Nonlinear resonances of nonlocal strain gradient nanoplates made of functionally graded materials considering geometric imperfection

  • Jia-Qin Xu;Gui-Lin She;Yin-Ping Li;Lei-Lei Gan
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.795-811
    • /
    • 2023
  • When studying the resonance problem of nanoplates, the existing papers do not consider the influences of geometric nonlinearity and initial geometric imperfection, so this paper is to fill this gap. In this paper, based on the nonlocal strain gradient theory (NSGT), the nonlinear resonances of functionally graded (FG) nanoplates with initial geometric imperfection under different boundary conditions are established. In order to consider the small size effect of plates, nonlocal parameters and strain gradient parameters are introduced to expand the assumptions of the first-order shear deformation theory. Subsequently, the equations of motion are derived using the Euler-Lagrange principle and solved with the help of perturbation method. In addition, the effects of initial geometrical imperfection, functionally graded index, strain gradient parameter, nonlocal parameter and porosity on the nonlinear forced vibration behavior of nanoplates under different boundary conditions are discussed.

Nonlinear resonance of magneto-electro-thermal-elastic plates with geometric imperfection

  • Yin-Ping Li;Gui-Lin She
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.267-277
    • /
    • 2024
  • In this article, the primary resonance characteristic of magneto-electro-elastic plates is analyzed, in which the geometric imperfection, thermal effect and shear deformation are taken into account, Applying Hamilton's principle, derivation of nonlinear motion equations is performed. Through solving these equations according to the modified Lindstedt Poincare method, the impacts of external electric voltage, magnetic potential, boundary conditions, temperature changes, geometric imperfection and aspect ratio on the resonance behaviors of MEE plates are examined. It can be found that, as the electric potential rises, the resonance position will be advanced. As the magnetic potential goes up, the resonance frequency of the plates increases, thus delaying the resonance position. As the initial geometric imperfection rises, the resonance position does not change, and the hard spring properties of the plates gradually weaken.

Lateral torsional buckling of steel I-beams: Effect of initial geometric imperfection

  • Bas, Selcuk
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.483-492
    • /
    • 2019
  • In the current study, the influence of the initial lateral (sweep) shape and the cross-sectional twist imperfection on the lateral torsional buckling (LTB) response of doubly-symmetric steel I-beams was investigated. The material imperfection (residual stress) was not considered. For this objective, standard European IPN 300 beam with different unbraced span was numerically analyzed for three imperfection cases: (i) no sweep and no twist (perfect); (ii) three different shapes of global sweep (half-sine, full-sine and full-parabola between the end supports); and (iii) the combination of three different sweeps with initial sinusoidal twist along the beam. The first comparison was done between the results of numerical analyses (FEM) and both a theoretical solution and the code lateral torsional buckling formulations (EC3 and AISC-LRFD). These results with no imperfection effects were then separately compared with three different shapes of global sweep and the presence of initial twist in these sweep shapes. Besides, the effects of the shapes of initial global sweep and the inclusion of sinusoidal twist on the critical buckling load of the beams were investigated to unveil which parameter was considerably effective on LTB response. The most compatible outcomes for the perfect beams was obtained from the AISC-LRFD formulation; however, the EC-3 formulation estimated the $P_{cr}$ load conservatively. The high difference from the EC-3 formulation was predicted to directly originate from the initial imperfection reduction factor and high safety factor in its formulation. Due to no consideration of geometric imperfection in the AISC-LFRD code solution and the theoretical formulation, the need to develop a practical imperfection reduction factor for AISC-LRFD and theoretical formulation was underlined. Initial imperfections were obtained to be more influential on the buckling load, as the unbraced length of a beam approached to the elastic limit unbraced length ($L_r$). Mode-compatible initial imperfection shapes should be taken into account in the design and analysis stages of the I-beam to properly estimate the geometric imperfection influence on the $P_{cr}$ load. Sweep and sweep-twist imperfections led to 10% and 15% decrease in the $P_{cr}$ load, respectively, thus; well-estimated sweep and twist imperfections should considered in the LTB of doubly-symmetric steel I-beams.

Nonlinear resonance of porous functionally graded nanoshells with geometrical imperfection

  • Wu-Bin Shan;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.355-368
    • /
    • 2023
  • Employing the non-local strain gradient theory (NSGT), this paper investigates the nonlinear resonance characteristics of functionally graded material (FGM) nanoshells with initial geometric imperfection for the first time. The effective material properties of the porous FGM nanoshells with even distribution of porosities are estimated by a modified power-law model. With the guidance of Love's thin shell theory and considering initial geometric imperfection, the strain equations of the shells are obtained. In order to characterize the small-scale effect of the nanoshells, the nonlocal parameter and strain gradient parameter are introduced. Subsequently, the Euler-Lagrange principle was used to derive the motion equations. Considering three boundary conditions, the Galerkin principle combined with the modified Lindstedt Poincare (MLP) method are employed to discretize and solve the motion equations. Finally, the effects of initial geometric imperfection, functional gradient index, strain gradient parameters, non-local parameters and porosity volume fraction on the nonlinear resonance of the porous FGM nanoshells are examined.

Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites

  • Khalaf, Basima Salman;Fenjan, Raad M.;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • v.8 no.3
    • /
    • pp.219-235
    • /
    • 2019
  • This research is devoted to analyzing mechanical-thermal post-buckling behavior of a micro-size beam reinforced with graphene platelets (GPLs) based on geometric imperfection effects. Graphene platelets have three types of dispersion within the structure including uniform-type, linear-type and nonlinear-type. The micro-size beam is considered to be perfect (ideal) or imperfect. Buckling mode shape of the micro-size beam has been assumed as geometric imperfection. Modified couple stress theory has been used for describing scale-dependent character of the beam having micro dimension. Via an analytical procedure, post-buckling path of the micro-size beam has been derived. It will be demonstrated that nonlinear buckling characteristics of the micro-size beam are dependent on geometric imperfection amplitude, thermal loading, graphene distribution and couple stress effects.

Thermal post-buckling and primary resonance of porous functionally graded beams: Effect of elastic foundations and geometric imperfection

  • Jia-Qin Xu;Gui-Lin She
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.543-551
    • /
    • 2023
  • In this article, thermal post-buckling and primary resonance of the porous functionally graded material (FGM) beams in thermal environment considering the geometric imperfection are studied, the material properties of FGM beams are assumed to vary along the thickness of the beam, meanwhile, the porosity volume fraction, geometric imperfection, temperature, and the elastic foundation are considered, using the Euler-Lagrange equation, the nonlinear vibration equations are derived, after the dimensionless processing, the dimensionless equations of motion can be obtained. Then, the two-step perturbation method is applied to solve the vibration problems, the resonance and thermal post-buckling response relations are obtained. Finally, the functionally graded index, the porosity volume fraction, temperature, geometric imperfection, and the elastic foundation on the resonance behaviors of the FGM beams are presented. It can be found that these parameters can influence the thermal post-buckling and primary resonance problems.

Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites

  • Fenjan, Raad M.;Faleh, Nadhim M.;Ahmed, Ridha A.
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.147-156
    • /
    • 2020
  • This research is related to nonlinear stability analysis of advanced microbeams reinforced by Graphene Platelets (GPLs) considering generic geometrical imperfections and thermal loading effect. Uniform, linear and nonlinear distributions of GPLs in transverse direction have been considered. Imperfection sensitivity of post-bucking behaviors of the microbeam to different kinds of geometric imperfections have been examined. Geometric imperfection is first considered to be identical as the first buckling mode, then a generic function is employed to consider sine-type, local-type and global-type imperfectness. Modified couple stress theory is adopted to incorporate size-dependent behaviors of the beam at micro scale. The post-buckling problem is solved analytically to derive load-amplitude curves. It is shown that post-buckling behavior of microbeam is dependent on the type geometric imperfection and its magnitude. Also, post-buckling load can be enhanced by adding more GPLs or selecting a suitable distribution for GPLs.