DOI QR코드

DOI QR Code

Nonlinear resonance of magneto-electro-thermal-elastic plates with geometric imperfection

  • Yin-Ping Li (College of Mechanical and Vehicle Engineering, Chongqing University) ;
  • Gui-Lin She (College of Mechanical and Vehicle Engineering, Chongqing University)
  • Received : 2023.08.30
  • Accepted : 2023.11.06
  • Published : 2024.09.25

Abstract

In this article, the primary resonance characteristic of magneto-electro-elastic plates is analyzed, in which the geometric imperfection, thermal effect and shear deformation are taken into account, Applying Hamilton's principle, derivation of nonlinear motion equations is performed. Through solving these equations according to the modified Lindstedt Poincare method, the impacts of external electric voltage, magnetic potential, boundary conditions, temperature changes, geometric imperfection and aspect ratio on the resonance behaviors of MEE plates are examined. It can be found that, as the electric potential rises, the resonance position will be advanced. As the magnetic potential goes up, the resonance frequency of the plates increases, thus delaying the resonance position. As the initial geometric imperfection rises, the resonance position does not change, and the hard spring properties of the plates gradually weaken.

Keywords

References

  1. Abdelrahman, A.A., Shanab, R.A., Esen, I., and Eltaher, M.A. (2022), "Effect of moving load on dynamics of nanoscale Timoshenko CNTs embedded in elastic media based on doublet mechanics theory", Steel Compos. Struct., 44(2), 241-256. https://doi.org/10.12989/scs.2022.44.2.241.
  2. Ansari, R., Gholami, R. and Rouhi, H. (2019), "Geometrically nonlinear free vibration analysis of shear deformable magneto-electro-elastic plates considering thermal effects based on a novel variational approach", Thin Wall. Struct., 135, 12-20. https://doi.org/10.1016/j.tws.2018.10.033.
  3. Arunkumar, M.P., Bhagat, V., Swetha, S., Geng, Q., Pitchaimani, J. and Li, Y.M. (2022), "An exact solution for vibro-acoustic response of MEE composite plate", Thin Wall. Struct., 179, 109598. https://doi.org/10.1016/j.tws.2022.109598.
  4. Basha, M., Daikh, A.A., Melaibari, A., Wagih, A., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022), "Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates", Steel Compos. Struct., 43(5), 639-660. https://doi.org/10.12989/scs.2022.43.5.639.
  5. Chen, X., Zhao, J.L., She, G.L., Jing, Y., Luo, J. and Pu, H.Y. (2022a), "On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment", Eur. Phys. J. Plus., 137(10), 1158. https://doi.org/10.1140/epjp/s13360-022-03234-0.
  6. Chen, X., Zhao, J.L., She, G.L., Jing, Y., Pu, H.Y. and Luo, J. (2022b), "Nonlinear free vibration analysis of functionally graded carbon nanotube reinforced fluid-conveying pipe in thermal environment", Steel Compos. Struct., 45(5), 641-652. https://doi.org/10.12989/scs.2022.45.5.641.
  7. Deepak, P., Jayakumar, K. and Panda, S. (2021), "Nonlinear free vibration analysis of piezoelectric laminated plate with random actuation electric potential difference and thermal loading", Appl. Math. Model., 95, 74-88. https://doi.org/10.1016/j.apm.2021.01.052.
  8. Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. https://doi.org/10.12989/sem.2021.80.1.063.
  9. Ding, H.X. and She, G.L. (2023a), "Nonlinear resonance of axially moving graphene platelet-reinforced metal foam cylindrical shells with geometric imperfection", Arch. Civil Mech. Eng., 23, 97. https://doi.org/10.1007/s43452-023-00634-6.
  10. Ding, H.X. and She, G.L. (2023b), "Nonlinear primary resonance behavior of graphene platelets reinforced metal foams conical shells under axial motion", Nonlin. Dyn., 111(15), 13723-13752. https://doi.org/10.1007/s11071-023-08564-x.
  11. Ding, H.X. and She, G.L. (2023c), "Nonlinear combined resonances of axially moving graphene platelets reinforced metal foams cylindrical shells under forced vibrations", Nonlin. Dyn., 112(1), 419-441. https://doi.org/10.1007/s11071-023-09059-5.
  12. Ding, H.X., Eltaher, M.A. and She, G.L. (2023a), "Nonlinear low-velocity impact of graphene platelets reinforced metal foams cylindrical shell: Effect of spinning motion and initial geometric imperfections", Aerosp. Sci. Technol., 140, 108435. https://doi.org/10.1016/j.ast.2023.108435.
  13. Ding, H.X., Liu, H.B., She, G.L. and Wu, F. (2023c), "Wave propagation of FG-CNTRC plates in thermal environment using the high-order shear deformation plate theory", Comput. Concrete, 32(2), 207-215. https://doi.org/10.12989/cac.2023.32.2.207.
  14. Ding, H.X., She, G.L. and Zhang, Y.W. (2022a), "Nonlinear buckling and resonances of functionally graded fluid-conveying pipes with initial geometric imperfection", Eur. Phys. J. Plus, 137, 1329. https://doi.org/10.1140/epjp/s13360-022-03570-1.
  15. Ding, H.X., Zhang, Y.W. and She, G.L. (2022b), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6), 433-443. https://doi.org/10.12989/cac.2022.30.6.433.
  16. Ding, H.X., Zhang, Y.W. and She, G.L. (2023b), "Propagation characteristics of guided waves in CNTRCs plates resting on elastic foundations in a thermal environment", Waves Random Complex Media, 2023, 1-18. https://doi.org/10.1080/17455030.2023.2235611.
  17. Ebrahimi, F. and Barati, M.R. (2017), "Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams", Mech. Syst. Signal Pr., 93, 445-459. https://doi.org/10.1016/j.ymssp.2017.02.021.
  18. Ellouz, H., Jrad, H., Wali, M. and Dammak, F. (2023), "Large deflection analysis of FGM/magneto-electro-elastic smart shells with porosities under multi-physics loading", Mech. Adv. Mater. Struct., 2023, 1-25. https://doi.org/10.1080/15376494.2023.2243938.
  19. Esayas, L.S. and Kattimani, S. (2022), "Effect of porosity on active damping of geometrically nonlinear vibrations of a functionally graded magneto-electro-elastic plate", Def. Technol., 18(6), 891-906. https://doi.org/10.1016/j.dt.2021.04.016.
  20. Esen, I. and Ozmen, R. (2022), "Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity", Compos. Struct., 296, 115878. https://doi.org/10.1016/j.compstruct.2022.115878.
  21. Gan, L.L. and She, G.L. (2023), "Nonlinear snap-buckling and resonance of FG-GPLRC curved beams with different boundary conditions", Geomech. Eng., 32(5), 541-551. https://doi.org/10.12989/gae.2023.32.5.541.
  22. Gan, L.L. and She, G.L. (2024), "Nonlinear low-velocity impact of magneto-electro-elastic plates with initial geometric imperfection", Acta Astronaut., 214, 11-29. https://doi.org/10.1016/j.actaastro.2023.10.016.
  23. Gan, L.L., Xu, J.Q. and She, G.L. (2023), "Wave propagation of graphene platelets reinforced metal foams circular plates", Struct. Eng. Mech., 85(5), 645-654. https://doi.org/10.12989/sem.2023.85.5.645.
  24. Gholami, R. and Ansari, R. (2018), "The effect of initial geometric imperfection on the nonlinear resonance of functionally graded carbon nanotube-reinforced composite rectangular plates", Appl. Math. Mech. Eng., 39(9), 1219-1238. https://doi.org/10.1007/s10483-018-2367-9.
  25. Hashemi, S.H. and Arsanjani, M. (2005), "Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates", Int. J. Solids Struct., 42, 819-853. https://doi.org/10.1016/j.ijsolstr.2004.06.063.
  26. Hendi, A., Eltaher, M.A, Mohamed, S.A and Attia, M. (2022), "Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel Compos. Struct., 41(6), 787-802. http://doi.org/DOI10.12989/scs.2021.41.6.787.
  27. Hong, J., Wang, S.P., Zhang, G.Y. and Mi, C.W. (2021), "On the bending and vibration analysis of functionally graded magneto-electro-elastic timoshenko microbeams", Crystals, 11(10), 1206. https://doi.org/10.3390/cryst11101206.
  28. Hu, W.P., Han, Z.Q, Bridges, T.J. and Qiao, Z.J. (2023b), "Multisymplectic simulations of w/m-shape-peaks solitons and cuspons for forq equation", Appl. Math. Lett., 145, 108772. https://doi.org/10.1016/j.aml.2023.108772.
  29. Hu, W.P., Xi, X.J. Song, Z.B., Zhang, C.Z. and Deng, Z.C. (2023a), "Coupling dynamic behaviors of axially moving cracked cantilevered beam subjected to transverse harmonic load", Mech. Syst. Signal Pr., 204, 110757. https://doi.org/10.1016/j.ymssp.2023.110757.
  30. Ke, L.L. and Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory", Acta Mech. Sinica, 30(4), 516-525. https://doi.org/10.1007/s10409-014-0072-3.
  31. Kiarasi, F., Babaei, M., Asemi, K., Dimitri, R. and Tornabene, F. (2022), "Free vibration analysis of thick annular functionally graded plate integrated with piezo-magneto-electro-elastic layers in a hygrothermal environment", Appl. Sci. Basel., 12(20), 10682. https://doi.org/10.3390/app122010682.
  32. Kiran, M.C. and Kattimani, S. (2020), "Assessment of vibrational frequencies and static characteristics of multilayered skew magneto-electro-elastic plates: A finite element study", Iran. J. Sci. Technol. Trans. Mech. Eng., 44(1), 61-82. https://doi.org/10.1007/s40997-018-0250-1.
  33. Li, J., Xue, Y. and Li, F. (2023a), "Active band gap control of magnetorheological meta-plate using frequency feedback control law", J. Sound Vib., 567, 118076. https://doi.org/10.1016/j.jsv.2023.118076.
  34. Li, Y.P., She, G.L., Gan, L.L. and Liu, H.B. (2023b), "Nonlinear thermal post-buckling analysis of graphene platelets reinforced metal foams plates with initial geometrical imperfection", Steel Compos. Struct., 46(5), 649-658. https://10.12989/scs.2023.46.5.649.
  35. Liang-liang, X., Chang-ping, C. and Yu-fang, Z. (2022), "Two-degrees-of-freedom nonlinear free vibration analysis of magneto-electro-elastic plate based on high order shear deformation theory", Commun. Nonlin. Sci., 114, 106662. https://doi.org//10.1016/j.cnsns.2022.106662.
  36. Liu, Y.F., Qin, Z.Y. and Chu, F.L. (2022), "Investigation of magneto-electro-thermo-mechanical loads on nonlinear forced vibrations of composite cylindrical shells", Commun. Nonlin. Sci., 107, 106146. https://doi.org/10.1016/j.cnsns.2021.106146.
  37. Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
  38. Mahesh, V. and Harursampath, D. (2022), "Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM", Eng. Comput. Germany, 38(2), 1029-1051. https://doi.org/10.1007/s00366-020-01098-5.
  39. Manyo, J.A.M., Ntamack, G.E. and Azrar, L. (2022), "Time and frequency 3D-dynamic analyses of multilayered magnetoelectroelastic plates with imperfect interfaces", Arch. Appl Mech., 92(8), 2273-2301. https://doi.org/10.1007/s00419-022-02177-3.
  40. Nguyen, T.N., Lee, S., Nguyen, P.C., Nguyen-Xuan, H. and Lee, J. (2020), "Geometrically nonlinear postbuckling behavior of imperfect FG-CNTRC shells under axial compression using isogeometric analysis", Eur. J. Mech. A Solid., 84, 104066. https://doi.org/10.1016/j.euromechsol.2020.104066.
  41. Nguyen, T.N., Thai, C.H., Luu, A.T., Nguyen-Xuan, H. and Lee, J. (2019), "NURBS-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells", Comput. Method. Appl. Mech. Eng., 347, 983-1003. https://doi.org/10.1016/j.cma.2019.01.011.
  42. Nguyen, T.N., Thai, C.H., Nguyen-Xuan, H. and Lee, J. (2018), "NURBS-based analyses of functionally graded carbon nanotube-reinforced composite shells", Compos. Struct., 203, 349-360. https://doi.org/10.1016/j.compstruct.2018.06.017.
  43. Qu, Y.L., Li, P., Zhang, G.Y., Jin, F. and Gao, X.L. (2020), "A microstructure-dependent anisotropic magneto-electro-elastic Mindlin plate model based on an extended modified couple stress theory", Acta Mech., 231(10), 4323-4350. https://doi.org/10.1007/s00707-020-02745-0.
  44. Salehi, M., Gholami, R., Ansari, R. (2022), "Nonlinear resonance of functionally graded porous circular cylindrical shells reinforced by graphene platelet with initial imperfections using higher-order shear deformation theory", Int. J. Struct. Stab. Dyn., 22(6), 2250075. https://doi.org/10.1142/S0219455422500754.
  45. She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
  46. She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mech. Sinica, 39, 522392. https://doi.org/10.1007/s10409-022-22392-x.
  47. She, G.L. and Li, Y.P. (2022), "Wave propagation in an FG circular plate in thermal environment", Geomech. Eng., 31(6), 615-622. https://doi.org/10.12989/gae.2022.31.6.615.
  48. She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.
  49. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  50. Shooshtari, A. and Razavi, S. (2016), "Vibration analysis of a magnetoelectroelastic rectangular plate based on a higher-order shear deformation theory", Lat. Am. J. Solid. Struct., 13(3), 554-572. https://doi.org/10.1590/1679-78251831.
  51. Sirimontree, S., Thongchom, C., Saffari, P.R., Refahati, N., Saffari, P.R., Jearsiripongkul, T. and Keawsawasvong, S. (2023), "Effects of thermal environment and external mean flow on sound transmission loss of sandwich functionally graded magneto-electro-elastic cylindrical nanoshell", Eur. J. Mech. A Solid., 97, 104774. https://doi.org/10.1016/j.euromechsol.2022.104774.
  52. Song, J.P. and She, G.L. (2023), "Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions", Struct. Eng. Mech., 86(3), 361-371. https://10.12989/sem.2023.86.3.361.
  53. Song, Y. and Xu, J.Y. (2021), "Multi-phase magneto-electro-elastic stability of nonlocal curved composite shells", Steel Compos. Struct., 41(6), 775-785. https://doi.org/10.12989/scs.2021.41.6.775.
  54. Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
  55. Vinyas, M. and Harursampath, D. (2020), "Nonlinear vibrations of magneto-electro-elastic doubly curved shells reinforced with carbon nanotubes", Compos. Struct., 253, 112749. https://doi.org/10.1016/j.compstruct.2020.112749.
  56. Wu, F. and She, G.L. (2023), "Wave propagation in double nanobeams in thermal environments using the Reddy's high-order shear deformation theory", Adv. Nano Res., 14(6), 495-506. https://doi.org/10.12989/anr.2023.14.6.495.
  57. Xu, J.Q. and She, G.L. (2022), "Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection", Geomech. Eng., 31(3), 329-337. https://doi.org/10.12989/gae.2022.31.3.329.
  58. Xu, J.Q. and She, G.L. (2023a), "Thermal post-buckling of graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Struct. Eng. Mech., 87(1), 85-94. https://doi.org/10.12989/sem.2023.87.1.085.
  59. Xu, J.Q. and She, G.L. (2023b), "The effects of temperature and porosity on resonance behavior of graphene platelet reinforced metal foams doubly-curved shells with geometric imperfection", Geomech. Eng., 35(1), 81-93. https://doi.org/10.12989/gae.2023.35.1.081.
  60. Xu, J.Q., She, G.L., Li. Y.P. and Gan, L.L. (2023), "Nonlinear resonances of nonlocal strain gradient nanoplates made of functionally graded materials considering geometric imperfection", Steel Compos. Struct., 47(6), 795-811. https://doi.org/10.12989/scs.2023.47.6.795.
  61. Xue, Y., Li, J., Wang, Y., Song, Z., Krushynska, A.O. (2023), "Widely tunable magnetorheological metamaterials with nonlinear amplification mechanism", Int. J. Mech. Sci., 19, 108830. https://doi.org/10.1016/j.ijmecsci.2023.108830.
  62. Zhang, G.Y., Qu, Y.L., Gao, X.L. and Jin, F. (2020), "A transversely isotropic magneto-electro-elastic Timoshenko beam model incorporating microstructure and foundation effects", Mech. Mater., 149, 103412. https://doi.org/10.1016/j.mechmat.2020.103412.
  63. Zhang, P.C., Qi, C.Z., Fang, H.Y. and Sun, X. (2021b), "Free vibration analysis of functionally graded magneto-electro-elastic plates with in-plane material heterogeneity", J. Intell. Mat. Syst. Struct., 32(11), 1234-1255. https://doi.org/10.1177/1045389X20975487.
  64. Zhang, S.Q., Zhao, Y.F., Wang, X., Chen, M. and Schmidt, R. (2022e), "Static and dynamic analysis of functionally graded magneto-electro-elastic and shells", Compos. Struct., 281, 114950. https://doi.org/10.1016/j.compstruct.2021.114950.
  65. Zhang, W., Guo, L.J., Wang, Y.W., Mao, J.J. and Yan, J.W. (2022c), "Nonlinear low velocity impact response of GRC beam with geometric imperfection under thermo-electro-mechanical loads", Nonlin. Dyn., 110(4), 3255-3272. https://doi.org/10.1007/s11071-022-07809-5.
  66. Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel Compos. Struct., 42(3), 397-405. https://doi.org/10.12989/scs.2022.42.3.397.
  67. Zhang, Y.W. and She, G.L. (2023a), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlin. Dyn., 111(7), 6317-6334. https://doi.org/10.1007/s11071-022-08186-9.
  68. Zhang, Y.W. and She, G.L. (2023b), "Nonlinear primary resonance of axially moving functionally graded cylindrical shells in thermal environment", Mech. Adv. Mater. Struct., 31(16), 3617-3629. https://doi.org/10.1080/15376494.2023.2180556.
  69. Zhang, Y.W., Ding, H.X. and She, G.L. (2022a), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stresses, 45(12), 1029-1042.https://doi.org/10.1080/01495739.2022.2125137.
  70. Zhang, Y.W., Ding, H.X. and She, G.L. (2023a), "Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes", Steel Compos. Struct., 46(1), 133-141. https://doi.org/10.12989/scs.2023.46.1.133.
  71. Zhang, Y.W., Ding, H.X., She, G.L. and Tounsi, A. (2023d), "Wave propagation of CNTRC beams resting on elastic foundation based on various higher-order beam theories", Geomech. Eng., 33(4), 381-391. https://doi.org/10.12989/gae.2023.33.4.381.
  72. Zhang, Y.W., She, G.L. and Ding, H.X. (2023b), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A Solid., 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
  73. Zhang, Y.W., She, G.L. and Eltaher, M.A. (2023e), "Nonlinear transient response of graphene platelets reinforced metal foams annular plate considering rotating motion and initial geometric imperfection", Aerosp. Sci. Technol., 142, 108693. https://doi.org/10.1016/j.ast.2023.108693.
  74. Zhang, Y.W., She, G.L., Gan, L.L. and Li, Y.P. (2023c), "Thermal post-buckling behavior of GPLRMF cylindrical shells with initial geometrical imperfection", Geomech. Eng., 32(6), 615-625. https://doi.org/10.12989/gae.2023.32.6.615.
  75. Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M. and She, G.L. (2021a), "On snap-buckling of FG-CNTRC curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
  76. Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022a), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.
  77. Zhao, J.L., She, G.L., Wu, F., Yuan, S.J., Bai, R.Q., Pu, H.Y., Wang, S.L. and Luo, J. (2022b), "Guided waves of porous FG nanoplates with four edges clamped", Adv. Nano. Res., 13(5), 465-474. https://doi.org/10.12989/anr.2022.13.5.465.
  78. Zhao, Y.B. and Zheng, P.P. (2021), "Parameter analyses of suspended cables subjected to simultaneous combination, super and sub-harmonic excitations", Steel Compos. Struct., 40(2), 203-216. https://doi.org/10.12989/scs.2021.40.2.203.
  79. Zhao, Y.B., Peng, J., Zhao, Y.Y. and Chen, L.C. (2017), "Effects of temperature variations on nonlinear planar free and forced oscillations at primary resonance of suspended cables", Nonlin. Dyn., 89, 2815-2827. https://doi.org/10.12989/scs.2021.40.2.203.
  80. Zhao, Y.F., Zhang, S.Q., Wang, X., Ma, S.Y., Zhao, G.Z. and Kang, Z. (2022), "Nonlinear analysis of carbon nanotube reinforced functionally graded plates with magneto-electro-elastic multiphase matrix", Compos. Struct., 297, 115969. https://doi.org/10.1016/j.compstruct.2022.115969.
  81. Zheng, Y.F., Kang, C.C., Xu, L.L. and Chen, C.P. (2022b), "Nonlinear analysis of rectangular magnetoelectroelastic moderately thick laminated plates under multi-field coupling loads", Thin Wall. Struct., 177, 109406. https://10.1016/j.tws.2022.109406.
  82. Zhou, L.M., Wang, J.Y., Li, X.L., Liu, C.Y., Liu, P., Ren, S.H. and Li, M. (2021), "The magneto-electro-elastic multi-physics coupling element free Galerkin method for smart structures in statics and dynamics problems", Thin Wall. Struct., 169, 108431. https://10.1016/j.tws.2021.108431.
  83. Zur, K.K., Arefi, M., Kim, J. and Reddy, J.N. (2020), "Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory", Compos. Part B Eng., 182, 107601. https://10.1016/j.compositesb.2019.107601.