References
- Abdelrahman, A.A., Shanab, R.A., Esen, I., and Eltaher, M.A. (2022), "Effect of moving load on dynamics of nanoscale Timoshenko CNTs embedded in elastic media based on doublet mechanics theory", Steel Compos. Struct., 44(2), 241-256. https://doi.org/10.12989/scs.2022.44.2.241.
- Ansari, R., Gholami, R. and Rouhi, H. (2019), "Geometrically nonlinear free vibration analysis of shear deformable magneto-electro-elastic plates considering thermal effects based on a novel variational approach", Thin Wall. Struct., 135, 12-20. https://doi.org/10.1016/j.tws.2018.10.033.
- Arunkumar, M.P., Bhagat, V., Swetha, S., Geng, Q., Pitchaimani, J. and Li, Y.M. (2022), "An exact solution for vibro-acoustic response of MEE composite plate", Thin Wall. Struct., 179, 109598. https://doi.org/10.1016/j.tws.2022.109598.
- Basha, M., Daikh, A.A., Melaibari, A., Wagih, A., Othman, R., Almitani, K.H., Hamed, M.A., Abdelrahman, A. and Eltaher, M.A. (2022), "Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates", Steel Compos. Struct., 43(5), 639-660. https://doi.org/10.12989/scs.2022.43.5.639.
- Chen, X., Zhao, J.L., She, G.L., Jing, Y., Luo, J. and Pu, H.Y. (2022a), "On wave propagation of functionally graded CNT strengthened fluid-conveying pipe in thermal environment", Eur. Phys. J. Plus., 137(10), 1158. https://doi.org/10.1140/epjp/s13360-022-03234-0.
- Chen, X., Zhao, J.L., She, G.L., Jing, Y., Pu, H.Y. and Luo, J. (2022b), "Nonlinear free vibration analysis of functionally graded carbon nanotube reinforced fluid-conveying pipe in thermal environment", Steel Compos. Struct., 45(5), 641-652. https://doi.org/10.12989/scs.2022.45.5.641.
- Deepak, P., Jayakumar, K. and Panda, S. (2021), "Nonlinear free vibration analysis of piezoelectric laminated plate with random actuation electric potential difference and thermal loading", Appl. Math. Model., 95, 74-88. https://doi.org/10.1016/j.apm.2021.01.052.
- Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. https://doi.org/10.12989/sem.2021.80.1.063.
- Ding, H.X. and She, G.L. (2023a), "Nonlinear resonance of axially moving graphene platelet-reinforced metal foam cylindrical shells with geometric imperfection", Arch. Civil Mech. Eng., 23, 97. https://doi.org/10.1007/s43452-023-00634-6.
- Ding, H.X. and She, G.L. (2023b), "Nonlinear primary resonance behavior of graphene platelets reinforced metal foams conical shells under axial motion", Nonlin. Dyn., 111(15), 13723-13752. https://doi.org/10.1007/s11071-023-08564-x.
- Ding, H.X. and She, G.L. (2023c), "Nonlinear combined resonances of axially moving graphene platelets reinforced metal foams cylindrical shells under forced vibrations", Nonlin. Dyn., 112(1), 419-441. https://doi.org/10.1007/s11071-023-09059-5.
- Ding, H.X., Eltaher, M.A. and She, G.L. (2023a), "Nonlinear low-velocity impact of graphene platelets reinforced metal foams cylindrical shell: Effect of spinning motion and initial geometric imperfections", Aerosp. Sci. Technol., 140, 108435. https://doi.org/10.1016/j.ast.2023.108435.
- Ding, H.X., Liu, H.B., She, G.L. and Wu, F. (2023c), "Wave propagation of FG-CNTRC plates in thermal environment using the high-order shear deformation plate theory", Comput. Concrete, 32(2), 207-215. https://doi.org/10.12989/cac.2023.32.2.207.
- Ding, H.X., She, G.L. and Zhang, Y.W. (2022a), "Nonlinear buckling and resonances of functionally graded fluid-conveying pipes with initial geometric imperfection", Eur. Phys. J. Plus, 137, 1329. https://doi.org/10.1140/epjp/s13360-022-03570-1.
- Ding, H.X., Zhang, Y.W. and She, G.L. (2022b), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6), 433-443. https://doi.org/10.12989/cac.2022.30.6.433.
- Ding, H.X., Zhang, Y.W. and She, G.L. (2023b), "Propagation characteristics of guided waves in CNTRCs plates resting on elastic foundations in a thermal environment", Waves Random Complex Media, 2023, 1-18. https://doi.org/10.1080/17455030.2023.2235611.
- Ebrahimi, F. and Barati, M.R. (2017), "Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams", Mech. Syst. Signal Pr., 93, 445-459. https://doi.org/10.1016/j.ymssp.2017.02.021.
- Ellouz, H., Jrad, H., Wali, M. and Dammak, F. (2023), "Large deflection analysis of FGM/magneto-electro-elastic smart shells with porosities under multi-physics loading", Mech. Adv. Mater. Struct., 2023, 1-25. https://doi.org/10.1080/15376494.2023.2243938.
- Esayas, L.S. and Kattimani, S. (2022), "Effect of porosity on active damping of geometrically nonlinear vibrations of a functionally graded magneto-electro-elastic plate", Def. Technol., 18(6), 891-906. https://doi.org/10.1016/j.dt.2021.04.016.
- Esen, I. and Ozmen, R. (2022), "Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity", Compos. Struct., 296, 115878. https://doi.org/10.1016/j.compstruct.2022.115878.
- Gan, L.L. and She, G.L. (2023), "Nonlinear snap-buckling and resonance of FG-GPLRC curved beams with different boundary conditions", Geomech. Eng., 32(5), 541-551. https://doi.org/10.12989/gae.2023.32.5.541.
- Gan, L.L. and She, G.L. (2024), "Nonlinear low-velocity impact of magneto-electro-elastic plates with initial geometric imperfection", Acta Astronaut., 214, 11-29. https://doi.org/10.1016/j.actaastro.2023.10.016.
- Gan, L.L., Xu, J.Q. and She, G.L. (2023), "Wave propagation of graphene platelets reinforced metal foams circular plates", Struct. Eng. Mech., 85(5), 645-654. https://doi.org/10.12989/sem.2023.85.5.645.
- Gholami, R. and Ansari, R. (2018), "The effect of initial geometric imperfection on the nonlinear resonance of functionally graded carbon nanotube-reinforced composite rectangular plates", Appl. Math. Mech. Eng., 39(9), 1219-1238. https://doi.org/10.1007/s10483-018-2367-9.
- Hashemi, S.H. and Arsanjani, M. (2005), "Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates", Int. J. Solids Struct., 42, 819-853. https://doi.org/10.1016/j.ijsolstr.2004.06.063.
- Hendi, A., Eltaher, M.A, Mohamed, S.A and Attia, M. (2022), "Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory", Steel Compos. Struct., 41(6), 787-802. http://doi.org/DOI10.12989/scs.2021.41.6.787.
- Hong, J., Wang, S.P., Zhang, G.Y. and Mi, C.W. (2021), "On the bending and vibration analysis of functionally graded magneto-electro-elastic timoshenko microbeams", Crystals, 11(10), 1206. https://doi.org/10.3390/cryst11101206.
- Hu, W.P., Han, Z.Q, Bridges, T.J. and Qiao, Z.J. (2023b), "Multisymplectic simulations of w/m-shape-peaks solitons and cuspons for forq equation", Appl. Math. Lett., 145, 108772. https://doi.org/10.1016/j.aml.2023.108772.
- Hu, W.P., Xi, X.J. Song, Z.B., Zhang, C.Z. and Deng, Z.C. (2023a), "Coupling dynamic behaviors of axially moving cracked cantilevered beam subjected to transverse harmonic load", Mech. Syst. Signal Pr., 204, 110757. https://doi.org/10.1016/j.ymssp.2023.110757.
- Ke, L.L. and Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory", Acta Mech. Sinica, 30(4), 516-525. https://doi.org/10.1007/s10409-014-0072-3.
- Kiarasi, F., Babaei, M., Asemi, K., Dimitri, R. and Tornabene, F. (2022), "Free vibration analysis of thick annular functionally graded plate integrated with piezo-magneto-electro-elastic layers in a hygrothermal environment", Appl. Sci. Basel., 12(20), 10682. https://doi.org/10.3390/app122010682.
- Kiran, M.C. and Kattimani, S. (2020), "Assessment of vibrational frequencies and static characteristics of multilayered skew magneto-electro-elastic plates: A finite element study", Iran. J. Sci. Technol. Trans. Mech. Eng., 44(1), 61-82. https://doi.org/10.1007/s40997-018-0250-1.
- Li, J., Xue, Y. and Li, F. (2023a), "Active band gap control of magnetorheological meta-plate using frequency feedback control law", J. Sound Vib., 567, 118076. https://doi.org/10.1016/j.jsv.2023.118076.
- Li, Y.P., She, G.L., Gan, L.L. and Liu, H.B. (2023b), "Nonlinear thermal post-buckling analysis of graphene platelets reinforced metal foams plates with initial geometrical imperfection", Steel Compos. Struct., 46(5), 649-658. https://10.12989/scs.2023.46.5.649.
- Liang-liang, X., Chang-ping, C. and Yu-fang, Z. (2022), "Two-degrees-of-freedom nonlinear free vibration analysis of magneto-electro-elastic plate based on high order shear deformation theory", Commun. Nonlin. Sci., 114, 106662. https://doi.org//10.1016/j.cnsns.2022.106662.
- Liu, Y.F., Qin, Z.Y. and Chu, F.L. (2022), "Investigation of magneto-electro-thermo-mechanical loads on nonlinear forced vibrations of composite cylindrical shells", Commun. Nonlin. Sci., 107, 106146. https://doi.org/10.1016/j.cnsns.2021.106146.
- Lu, L., She, G.L. and Guo, X. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
- Mahesh, V. and Harursampath, D. (2022), "Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM", Eng. Comput. Germany, 38(2), 1029-1051. https://doi.org/10.1007/s00366-020-01098-5.
- Manyo, J.A.M., Ntamack, G.E. and Azrar, L. (2022), "Time and frequency 3D-dynamic analyses of multilayered magnetoelectroelastic plates with imperfect interfaces", Arch. Appl Mech., 92(8), 2273-2301. https://doi.org/10.1007/s00419-022-02177-3.
- Nguyen, T.N., Lee, S., Nguyen, P.C., Nguyen-Xuan, H. and Lee, J. (2020), "Geometrically nonlinear postbuckling behavior of imperfect FG-CNTRC shells under axial compression using isogeometric analysis", Eur. J. Mech. A Solid., 84, 104066. https://doi.org/10.1016/j.euromechsol.2020.104066.
- Nguyen, T.N., Thai, C.H., Luu, A.T., Nguyen-Xuan, H. and Lee, J. (2019), "NURBS-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells", Comput. Method. Appl. Mech. Eng., 347, 983-1003. https://doi.org/10.1016/j.cma.2019.01.011.
- Nguyen, T.N., Thai, C.H., Nguyen-Xuan, H. and Lee, J. (2018), "NURBS-based analyses of functionally graded carbon nanotube-reinforced composite shells", Compos. Struct., 203, 349-360. https://doi.org/10.1016/j.compstruct.2018.06.017.
- Qu, Y.L., Li, P., Zhang, G.Y., Jin, F. and Gao, X.L. (2020), "A microstructure-dependent anisotropic magneto-electro-elastic Mindlin plate model based on an extended modified couple stress theory", Acta Mech., 231(10), 4323-4350. https://doi.org/10.1007/s00707-020-02745-0.
- Salehi, M., Gholami, R., Ansari, R. (2022), "Nonlinear resonance of functionally graded porous circular cylindrical shells reinforced by graphene platelet with initial imperfections using higher-order shear deformation theory", Int. J. Struct. Stab. Dyn., 22(6), 2250075. https://doi.org/10.1142/S0219455422500754.
- She, G.L. (2021), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
- She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mech. Sinica, 39, 522392. https://doi.org/10.1007/s10409-022-22392-x.
- She, G.L. and Li, Y.P. (2022), "Wave propagation in an FG circular plate in thermal environment", Geomech. Eng., 31(6), 615-622. https://doi.org/10.12989/gae.2022.31.6.615.
- She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.
- She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
- Shooshtari, A. and Razavi, S. (2016), "Vibration analysis of a magnetoelectroelastic rectangular plate based on a higher-order shear deformation theory", Lat. Am. J. Solid. Struct., 13(3), 554-572. https://doi.org/10.1590/1679-78251831.
- Sirimontree, S., Thongchom, C., Saffari, P.R., Refahati, N., Saffari, P.R., Jearsiripongkul, T. and Keawsawasvong, S. (2023), "Effects of thermal environment and external mean flow on sound transmission loss of sandwich functionally graded magneto-electro-elastic cylindrical nanoshell", Eur. J. Mech. A Solid., 97, 104774. https://doi.org/10.1016/j.euromechsol.2022.104774.
- Song, J.P. and She, G.L. (2023), "Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions", Struct. Eng. Mech., 86(3), 361-371. https://10.12989/sem.2023.86.3.361.
- Song, Y. and Xu, J.Y. (2021), "Multi-phase magneto-electro-elastic stability of nonlocal curved composite shells", Steel Compos. Struct., 41(6), 775-785. https://doi.org/10.12989/scs.2021.41.6.775.
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Vinyas, M. and Harursampath, D. (2020), "Nonlinear vibrations of magneto-electro-elastic doubly curved shells reinforced with carbon nanotubes", Compos. Struct., 253, 112749. https://doi.org/10.1016/j.compstruct.2020.112749.
- Wu, F. and She, G.L. (2023), "Wave propagation in double nanobeams in thermal environments using the Reddy's high-order shear deformation theory", Adv. Nano Res., 14(6), 495-506. https://doi.org/10.12989/anr.2023.14.6.495.
- Xu, J.Q. and She, G.L. (2022), "Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection", Geomech. Eng., 31(3), 329-337. https://doi.org/10.12989/gae.2022.31.3.329.
- Xu, J.Q. and She, G.L. (2023a), "Thermal post-buckling of graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Struct. Eng. Mech., 87(1), 85-94. https://doi.org/10.12989/sem.2023.87.1.085.
- Xu, J.Q. and She, G.L. (2023b), "The effects of temperature and porosity on resonance behavior of graphene platelet reinforced metal foams doubly-curved shells with geometric imperfection", Geomech. Eng., 35(1), 81-93. https://doi.org/10.12989/gae.2023.35.1.081.
- Xu, J.Q., She, G.L., Li. Y.P. and Gan, L.L. (2023), "Nonlinear resonances of nonlocal strain gradient nanoplates made of functionally graded materials considering geometric imperfection", Steel Compos. Struct., 47(6), 795-811. https://doi.org/10.12989/scs.2023.47.6.795.
- Xue, Y., Li, J., Wang, Y., Song, Z., Krushynska, A.O. (2023), "Widely tunable magnetorheological metamaterials with nonlinear amplification mechanism", Int. J. Mech. Sci., 19, 108830. https://doi.org/10.1016/j.ijmecsci.2023.108830.
- Zhang, G.Y., Qu, Y.L., Gao, X.L. and Jin, F. (2020), "A transversely isotropic magneto-electro-elastic Timoshenko beam model incorporating microstructure and foundation effects", Mech. Mater., 149, 103412. https://doi.org/10.1016/j.mechmat.2020.103412.
- Zhang, P.C., Qi, C.Z., Fang, H.Y. and Sun, X. (2021b), "Free vibration analysis of functionally graded magneto-electro-elastic plates with in-plane material heterogeneity", J. Intell. Mat. Syst. Struct., 32(11), 1234-1255. https://doi.org/10.1177/1045389X20975487.
- Zhang, S.Q., Zhao, Y.F., Wang, X., Chen, M. and Schmidt, R. (2022e), "Static and dynamic analysis of functionally graded magneto-electro-elastic and shells", Compos. Struct., 281, 114950. https://doi.org/10.1016/j.compstruct.2021.114950.
- Zhang, W., Guo, L.J., Wang, Y.W., Mao, J.J. and Yan, J.W. (2022c), "Nonlinear low velocity impact response of GRC beam with geometric imperfection under thermo-electro-mechanical loads", Nonlin. Dyn., 110(4), 3255-3272. https://doi.org/10.1007/s11071-022-07809-5.
- Zhang, Y.W. and She, G.L. (2022), "Wave propagation and vibration of FG pipes conveying hot fluid", Steel Compos. Struct., 42(3), 397-405. https://doi.org/10.12989/scs.2022.42.3.397.
- Zhang, Y.W. and She, G.L. (2023a), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlin. Dyn., 111(7), 6317-6334. https://doi.org/10.1007/s11071-022-08186-9.
- Zhang, Y.W. and She, G.L. (2023b), "Nonlinear primary resonance of axially moving functionally graded cylindrical shells in thermal environment", Mech. Adv. Mater. Struct., 31(16), 3617-3629. https://doi.org/10.1080/15376494.2023.2180556.
- Zhang, Y.W., Ding, H.X. and She, G.L. (2022a), "Snap-buckling and resonance of functionally graded graphene reinforced composites curved beams resting on elastic foundations in thermal environment", J. Therm. Stresses, 45(12), 1029-1042.https://doi.org/10.1080/01495739.2022.2125137.
- Zhang, Y.W., Ding, H.X. and She, G.L. (2023a), "Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes", Steel Compos. Struct., 46(1), 133-141. https://doi.org/10.12989/scs.2023.46.1.133.
- Zhang, Y.W., Ding, H.X., She, G.L. and Tounsi, A. (2023d), "Wave propagation of CNTRC beams resting on elastic foundation based on various higher-order beam theories", Geomech. Eng., 33(4), 381-391. https://doi.org/10.12989/gae.2023.33.4.381.
- Zhang, Y.W., She, G.L. and Ding, H.X. (2023b), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A Solid., 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
- Zhang, Y.W., She, G.L. and Eltaher, M.A. (2023e), "Nonlinear transient response of graphene platelets reinforced metal foams annular plate considering rotating motion and initial geometric imperfection", Aerosp. Sci. Technol., 142, 108693. https://doi.org/10.1016/j.ast.2023.108693.
- Zhang, Y.W., She, G.L., Gan, L.L. and Li, Y.P. (2023c), "Thermal post-buckling behavior of GPLRMF cylindrical shells with initial geometrical imperfection", Geomech. Eng., 32(6), 615-625. https://doi.org/10.12989/gae.2023.32.6.615.
- Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M. and She, G.L. (2021a), "On snap-buckling of FG-CNTRC curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.
- Zhao, J.L., Chen, X., She, G.L., Jing, Y., Bai, R.Q., Yi, J., Pu, H.Y. and Luo, J. (2022a), "Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments", Steel Compos. Struct., 43(6), 797-808. https://doi.org/10.12989/scs.2022.43.6.797.
- Zhao, J.L., She, G.L., Wu, F., Yuan, S.J., Bai, R.Q., Pu, H.Y., Wang, S.L. and Luo, J. (2022b), "Guided waves of porous FG nanoplates with four edges clamped", Adv. Nano. Res., 13(5), 465-474. https://doi.org/10.12989/anr.2022.13.5.465.
- Zhao, Y.B. and Zheng, P.P. (2021), "Parameter analyses of suspended cables subjected to simultaneous combination, super and sub-harmonic excitations", Steel Compos. Struct., 40(2), 203-216. https://doi.org/10.12989/scs.2021.40.2.203.
- Zhao, Y.B., Peng, J., Zhao, Y.Y. and Chen, L.C. (2017), "Effects of temperature variations on nonlinear planar free and forced oscillations at primary resonance of suspended cables", Nonlin. Dyn., 89, 2815-2827. https://doi.org/10.12989/scs.2021.40.2.203.
- Zhao, Y.F., Zhang, S.Q., Wang, X., Ma, S.Y., Zhao, G.Z. and Kang, Z. (2022), "Nonlinear analysis of carbon nanotube reinforced functionally graded plates with magneto-electro-elastic multiphase matrix", Compos. Struct., 297, 115969. https://doi.org/10.1016/j.compstruct.2022.115969.
- Zheng, Y.F., Kang, C.C., Xu, L.L. and Chen, C.P. (2022b), "Nonlinear analysis of rectangular magnetoelectroelastic moderately thick laminated plates under multi-field coupling loads", Thin Wall. Struct., 177, 109406. https://10.1016/j.tws.2022.109406.
- Zhou, L.M., Wang, J.Y., Li, X.L., Liu, C.Y., Liu, P., Ren, S.H. and Li, M. (2021), "The magneto-electro-elastic multi-physics coupling element free Galerkin method for smart structures in statics and dynamics problems", Thin Wall. Struct., 169, 108431. https://10.1016/j.tws.2021.108431.
- Zur, K.K., Arefi, M., Kim, J. and Reddy, J.N. (2020), "Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory", Compos. Part B Eng., 182, 107601. https://10.1016/j.compositesb.2019.107601.