• Title/Summary/Keyword: Geometric Construction

Search Result 489, Processing Time 0.025 seconds

A study on the geometric construction task of middle school according to the mathematics curriculums (교육과정에 따른 중학교 작도 과제의 변화 연구)

  • Suh, Boeuk
    • East Asian mathematical journal
    • /
    • v.36 no.4
    • /
    • pp.493-513
    • /
    • 2020
  • The reason for this study is that the learning content of geometric construction in school mathematics is very insufficient. Geometric construction not only enables in-depth understanding of shapes, but also improves deductive proof skills. In school mathematics education, geometric construction is a very important learning factor, and educational significance is very high in that it can develop reasoning skills essential to the future society. Nevertheless, the reduction of geometric construction learning content in Korean curriculum and mathematics textbooks is against the times. Therefore, the purpose of this study is to analyze the transition of geometric construction learning contents in middle school mathematics curriculum and mathematics textbooks. In order to achieve the purpose of this study, the following studies were conducted. First, we analyze the characteristics of geometric construction according to changes in curriculum and textbooks. Second, we develop a framework for analyzing geometric construction tasks. Third, we explore geometric construction tasks according to the developed framework. Through this, it is expected to provide significant implications for the geometric areas of the new middle school curriculum that will be developed in the future.

Justification of construction methods in middle school textbooks (교과서에서 나타난 작도방법의 정당화)

  • Kang, Mee-Kwang;Hwang, Seur-Gi
    • Proceedings of the Korea Society of Mathematical Education Conference
    • /
    • 2010.04a
    • /
    • pp.151-163
    • /
    • 2010
  • This study is to provide improved teaching methods on classical geometric construction education by a straightedge and compass in school mathematics. In this paper, justifications of construction methods of Korean textbooks, for perpendicular bisector of an segment and angle bisector are discussed, which can be directly applicable to teaching geometric construction meaningfully. Based on these considerations, several implications for desirable teaching methods concerning geometric construction were suggested.

  • PDF

교과서에서 나타난 작도방법의 정당화

  • Kang, Mee-Kwang;Hwang, Seurgi-Gi
    • East Asian mathematical journal
    • /
    • v.26 no.2
    • /
    • pp.151-164
    • /
    • 2010
  • This study is to provide improved teaching methods on classical geometric construction education by a straightedge and compass in school mathematics. In this paper, justifications of construction methods of Korean textbooks, for perpendicular bisector of an segment and angle bisector are discussed, which can be directly applicable to teaching geometric construction meaningfully. Based on these considerations, several implications for desirable teaching methods concerning geometric construction were suggested.

A Geometric Constraint Solver for Parametric Modeling

  • Jae Yeol Lee;Kwangsoo Kim
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.211-222
    • /
    • 1998
  • Parametric design is an important modeling paradigm in CAD/CAM applications, enabling efficient design modifications and variations. One of the major issues in parametric design is to develop a geometric constraint solver that can handle a large set of geometric configurations efficiently and robustly. In this appear, we propose a new approach to geometric constraint solving that employs a graph-based method to solve the ruler-and-compass constructible configurations and a numerical method to solve the ruler-and-compass non-constructible configurations, in a way that combines the advantages of both methods. The geometric constraint solving process consists of two phases: 1) planning phase and 2) execution phase. In the planning phase, a sequence of construction steps is generated by clustering the constrained geometric entities and reducing the constraint graph in sequence. in the execution phase, each construction step is evaluated to determine the geometric entities, using both approaches. By combining the advantages of the graph-based constructive approach with the universality of the numerical approach, the proposed approach can maximize the efficiency, robustness, and extensibility of geometric constraint solver.

  • PDF

A GEOMETRIC PROOF OF THE ROBINSON-SCHENSTED-KNUTH CORRESPONDENCE

  • CHOI, SEUL HEE
    • Honam Mathematical Journal
    • /
    • v.26 no.3
    • /
    • pp.257-268
    • /
    • 2004
  • In this paper, we give a proof of the Robinson-Schensted-Knuth correspondence by using the geometric. construction. We represent a generalized permutation in the first quadrant of the Cartesian plane and find a corresponding pair of semi-standard tableaux of same shape. This work extends the classical geometric construction of Viennot [10] for Robinson-Schensted correspondence.

  • PDF

RAPID GEOMETRIC 3D MODELING FOR AUTOMATED CONSTRUCTION EQUIPMENT

  • Jo, Yong-Gwon;Hass, Carl T.
    • Construction Engineering and Management
    • /
    • v.4 no.1 s.13
    • /
    • pp.55-60
    • /
    • 2003
  • Unstructured workspaces which are typical in construction contain unpredicable activities as well as changing environments. Most automated and semi-automated construction tasks require real-time information about the local workspace in the form of 3D geometric models. This paper describes and demonstrates a new rapid, local area geometric data extraction and 3D visualization method for unstructured construction workspaces that combines human perception, simple sensors, and descriptive CAD models. The rapid approach will be useful in construction in construction in order to optimize automated equipment tasks and to significantly improve safety and a remote operator's spatial perception of the workspace.

A Study on the Comparison of Triangle Congruence in Euclidean Geometry (유클리드 기하학에서 삼각형의 합동조건의 도입 비교)

  • Kang, Mee-Kwang
    • The Mathematical Education
    • /
    • v.49 no.1
    • /
    • pp.53-65
    • /
    • 2010
  • The congruent conditions of triangles' plays an important role to connect intuitive geometry with deductive geometry in school mathematics. It is induced by 'three determining conditions of triangles' which is justified by classical geometric construction. In this paper, we analyze the essential meaning and geometric position of 'congruent conditions of triangles in Euclidean Geometry and investigate introducing processes for them in the Elements of Euclid, Hilbert congruent axioms, Russian textbook and Korean textbook, respectively. Also, we give justifications of construction methods for triangle having three segments with fixed lengths and angle equivalent to given angle suggested in Korean textbooks, are discussed, which can be directly applicable to teaching geometric construction meaningfully.

Weighted Geometric Means of Positive Operators

  • Izumino, Saichi;Nakamura, Noboru
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.2
    • /
    • pp.213-228
    • /
    • 2010
  • A weighted version of the geometric mean of k ($\geq\;3$) positive invertible operators is given. For operators $A_1,{\ldots},A_k$ and for nonnegative numbers ${\alpha}_1,\ldots,{\alpha}_k$ such that $\sum_\limits_{i=1}^k\;\alpha_i=1$, we define weighted geometric means of two types, the first type by a direct construction through symmetrization procedure, and the second type by an indirect construction through the non-weighted (or uniformly weighted) geometric mean. Both of them reduce to $A_1^{\alpha_1}{\cdots}A_k^{{\alpha}_k}$ if $A_1,{\ldots},A_k$ commute with each other. The first type does not have the property of permutation invariance, but satisfies a weaker one with respect to permutation invariance. The second type has the property of permutation invariance. We also show a reverse inequality for the arithmetic-geometric mean inequality of the weighted version.

Basic study about Geometric feasibility Analysis of the System form for the Bridge Slab (교량 상판 콘크리트 타설용 거푸집 시스템의 기하학적 타당성 분석의 기초연구)

  • Sung, Soojin;Lim, Jeeyoung;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.197-198
    • /
    • 2014
  • The concrete work of bridge decks is performed in a high place, which may reduce safety and productivity. In addition, the conventional method for deck forms require a great deal of manpower, and a form (sheathing) board is damaged when removed after curing. As a result, the concrete deck work of bridge construction becomes the cause of delayed construction and increased cost. To solve these problems, SMART form, a system form, is developed. SMART form is a temporary device for easier installation and removal, by mounting it to the lower flange of a bridge girder and using a mechanical behavior of the form system for deck concrete pouring. For stable installation and removal of the developed SMART form, geometric behaviors should be analyzed to prove its validity. Furthermore, the validity of geometric behaviors when the SMART form size is altered in response to the various arrangement of bridge girders should be proved. Thus, the study is intended to analyze the geometric validity of the form system for bridge deck concrete pouring. The structural stability of the form system for bridge deck concrete pouring can be secured, which will be applied in the field.

  • PDF

A simplified geometric stiffness in stability analysis of thin-walled structures by the finite element method

  • Senjanovic, Ivo;Vladimir, Nikola;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.313-321
    • /
    • 2012
  • Vibration analysis of a thin-walled structure can be performed with a consistent mass matrix determined by the shape functions of all degrees of freedom (d.o.f.) used for construction of conventional stiffness matrix, or with a lumped mass matrix. In similar way stability of a structure can be analysed with consistent geometric stiffness matrix or geometric stiffness matrix with lumped buckling load, related only to the rotational d.o.f. Recently, the simplified mass matrix is constructed employing shape functions of in-plane displacements for plate deflection. In this paper the same approach is used for construction of simplified geometric stiffness matrix. Beam element, and triangular and rectangular plate element are considered. Application of the new geometric stiffness is illustrated in the case of simply supported beam and square plate. The same problems are solved with consistent and lumped geometric stiffness matrix, and the obtained results are compared with the analytical solution. Also, a combination of simplified and lumped geometric stiffness matrix is analysed in order to increase accuracy of stability analysis.