Abstract
The congruent conditions of triangles' plays an important role to connect intuitive geometry with deductive geometry in school mathematics. It is induced by 'three determining conditions of triangles' which is justified by classical geometric construction. In this paper, we analyze the essential meaning and geometric position of 'congruent conditions of triangles in Euclidean Geometry and investigate introducing processes for them in the Elements of Euclid, Hilbert congruent axioms, Russian textbook and Korean textbook, respectively. Also, we give justifications of construction methods for triangle having three segments with fixed lengths and angle equivalent to given angle suggested in Korean textbooks, are discussed, which can be directly applicable to teaching geometric construction meaningfully.