• 제목/요약/키워드: Geological Term

검색결과 170건 처리시간 0.023초

The Study of Basic Direction and Successful Fixation Way for Enhancing Educational Capacity of General High School in Gyeongsangbuk-do (경상북도 일반고의 교육역량 제고를 위한 기본방향과 성공적인 정착방안 탐색)

  • Chung, Il-Hwan
    • Korean Journal of Comparative Education
    • /
    • 제24권3호
    • /
    • pp.1-23
    • /
    • 2014
  • The purpose of this study is to analyze some problems of general high school and provide some promotion ways of general high school in Gyeongsangbuk-do in long and short term perspective, considering necessity for consolidating educational capacity of general high school which is in disadvantage due to high school diversity and special high school promotion policy. For this, first, the study explores educational policy basis of Park Geun-hye's government, educational policy direction of Gyeongsangbuk-do, educational situation of general high school in Gyeongbuk area, and main contents of educational capacity consolidation way of general high school. Main tasks of Gyeongsangbuk-do general high school educational capacity reconsideration based on the educational capacity consolidation way of Ministry of Education are (1) enlargement of autonomy for formation and operation of focused curriculum by guidance, (2) enlargement of guidance and vocational education for general high school student, (3) consolidation of support program for student at risk, and (4) consolidation of support for general high school High-up program. For these main tasks are fixed and operated in school successfully, the fixation of school responsible management system based on geological environment and trait of each general high school, the application of whole quality control in school management, and the formation of cooperative school organizational culture should be constructed. And specific practice tasks and strategies for Gyeongsangbuk-do general high school educational capacity reconsideration (the cultivation of grobal democratic citizen, human being image in 2009 revised curriculum, and 'talented people with new thinking and genuine mind' of Gyeongsangbuk-do) are provided.

Composition and Evolution of Lithosphere Beneath the Jeju Island Region (I): A Review (제주도 암석권의 성분과 진화(I): 리뷰)

  • Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • 제25권3호
    • /
    • pp.261-281
    • /
    • 2016
  • Our knowledge of the lithosphere beneath the Korean Peninsula has been improved through petrologic and geochemical studies of upper mantle xenoliths hosted by Quaternary intraplate alkali basalts from Jeju Island. The xenoliths are mostly spinel lherzolites, accompanied by subordinate harzburgite and pyroxenites. The mantle xenoliths represent residual mantle material showing textural and geochemical evidence for at least a three-stage evolution, fractional partial melting, recrystallization, and metasomatism. Their composition primarily controlled by early fractional melt extraction and porphyroclastic and mylonitic fabrics formed in a shear-dominated environment, which was subsequently modified by residual slab-derived fluids (or melts). Modal metasomatic products occur as both anhydrous phase(orthopyroxene) and hydrous phase (phlogopite). Late-stage orthopyroxene is more common than phlogopite. However, chemical equilibrium is evident between the primary and secondary orthopyroxene, implying that the duration of post-metasomatic high temperatures enabled complete resetting/reequilibration of the mineral compositions. The metasomatic enrichment pre-dates the host Jeju Quaternary magmatism, and a genetic relationship with the host magmas is considered unlikely. Following enrichment in the peridotite protolith in the mantle wedge, the upper mantle beneath proto-Jeju Island was transformed from a subarc environment to an intraplate environment. The Jeju peridotites, representing old subarc fragments, were subsequently transported to the surface, incorporated into ascending Quaternary intraplate alkali basalt. The result of this study implies that long term material transfer in the transformation of geotectonic setting from a subarc to intraplate may have played a significant role in the evolution of lithospheric mantle, resulting in the enriched mantle domains, such as EM I or EM II in the lithospheric mantle beneath East Asia.

A Study on the Impermeability of Ground using N.D.S and S.M.I methods (N.D.S공법과 S.M.I공법을 이용한 지반차수 방법에 관한 연구)

  • Kim, Ji-Hwan;Kim, Joon-Jeong;Cho, Kook-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제11권2호
    • /
    • pp.87-92
    • /
    • 2011
  • This paper describes a study on the permeability reduction of the riverbed ground during urban railway tunnel construction. The research is mainly concentrated on the study of the grouting or injection methods among permeability reduction methods which can be adapted in the riverbed ground. The design technology of grouting methods considering the long term hydro-geological behaviour in the riverbed, was suggested. Two injection methods namely, Natural Durable Stabilizer (N.D.S) and Space-Multi Injection Grouting (S.M.I) methods, were introduced as new approach methods which could be adapted to modify the riverbed ground. In order to evaluate the performance of the improved ground by the N.D.S and S.M.I method, a series of pilot tests including the field and laboratory permeability tests, were carried out in the river crossing tunnel construction sites. The results obtained from pilot test program, were also reviewed. The results, the grouting efficiency of the S.M.I method using the non-alkalimeter silica sol is better than that of N.D.S method using cement. In addition, it is anticipated that the current research results are contributed to develop the grouting design technology.

Site-Investigation of Underground Complex Plant Construction by Seismic Survey and Electrical Resistivity (탄성파 및 전기비저항을 활용한 지하복합 플랜트 건설 후보지 탐사)

  • Kim, Namsun;Lee, Jong-Sub;Kim, Ki-Seog;Kim, Sang Yeob;Park, Junghee
    • Journal of the Korean Geotechnical Society
    • /
    • 제38권10호
    • /
    • pp.49-60
    • /
    • 2022
  • Underground urbanization appears to be a promising solution in response to the shortage of construction sites in the above-ground space. In this context, an accurate evaluation of a construction site ensures the long-term performance of geosystems. This study characterizes potential sites for complex plants built in underground space using geophysical methods (i.e., seismic refraction exploration and electrical resistivity survey) and in situ tests (i.e., standard penetration tests (SPTs) and downhole tests). SPTs are conducted in nine boreholes BH-1-BH-9 to estimate the groundwater level and vertical distribution of geological structures. The seismic refraction method enables us to obtain the elastic wave velocity and thickness of each soil layer for each cross-sectional area. An electrical resistivity survey conducted using the dipole array method provides the electrical resistivity profiles of the cross-sectional area. Data obtained using geophysical techniques are used to assess the classification of the soil layer and bedrock, particularly the fracture zone. This study suggests that geotechnical information using in situ tests and geophysical methods are useful references to design an underground complex plant construction.

Physio-mechanical and X-ray CT characterization of bentonite as sealing material in geological radioactive waste disposal

  • Melvin B. Diaz;Sang Seob Kim;Gyung Won Lee;Kwang Yeom Kim;Changsoo Lee;Jin-Seop Kim;Minseop Kim
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.449-459
    • /
    • 2023
  • The design and development of underground nuclear waste repositories should cover the performance evaluation of the different components such as the construction materials because the long term stability will depend on their response to the surrounding conditions. In South Korea, Gyeonju bentonite has been proposed as a candidate to be used as buffer and backfilling material, especially in the form of blocks to speed up the construction process. In this study, various cylindrical samples were prepared with different dry density and water content, and their physical and mechanical properties were analyzed and correlated with X-ray CT observations. The main objective was to characterize the samples and establish correlations for non-destructive estimation of physical and mechanical properties through the utilization of X-ray CT images. The results showed that the Uniaxial Compression Strength and the P-wave velocity have an increasing relationship with the dry density. Also, a higher water content increased the values of the measure parameters, especially for the P-wave velocity. The X-ray CT analysis indicated a clear relation between the mean CT value and the dry density, Uniaxial Compression Strength, and P-wave velocity. The effect of the higher water content was also captured by the mean CT value. Also, the relationship between the mean CT value and the dry density was used to plot CT dry densities using CT images only. Moreover, the histograms also provided information about the samples heterogeneity through the histograms' full width at half maximum values. Finally, the particle size and heterogeneity were also analyzed using the Madogram function. This function identified small particles in uniform samples and large particles in some samples as a result of poor mixing during preparation. Also, the μmax value correlated with the heterogeneity, and higher values represented samples with larger ranges of CT values or particle densities. These image-based tools have been shown to be useful on the non-destructive characterization of bentonite samples, and the establishment of correlations to obtain physical and mechanical parameters solely from CT images.

Intraspecific diversity and phylogeography of bony lip barb, Osteochilus vittatus, in Sundaland, as revealed by mitochondrial cytochrome oxidase I (mtCOI)

  • Imron Imron;Fajar Anggraeni;Wahyu Pamungkas;Huria Marnis;Yogi Himawan;Dessy Nurul Astuti;Flandrianto Sih Palimirmo;Otong Zenal Arifin;Jojo Subagja;Daniel Frikli Mokodongan;Rahmat Hidayat
    • Fisheries and Aquatic Sciences
    • /
    • 제27권3호
    • /
    • pp.145-158
    • /
    • 2024
  • Life history characteristics, habitat landscape, and historical events are believed to have shaped the patterns of genetic variation in many taxa. The bony lip barb, Osteohilus vittatus, represent a potamodromous fish that complete all life cycle in freshwater and is widely distributed in Southeast Asia. It usually lives in small rivers and other freshwater habitats, and movement between habitats for either food or reproduction has been typical. These life history characteristics may promote gene flow, leading to less structured populations. However, many freshwater habitats are fragmented, which restricts gene flow. We investigate how this interplay has shaped patterns of genetic variation and phylogeographic structure within this species in the Sundaland, a biodiversity hotspot with a complex geological history, using mitochondrial cytochrome oxidase I (mtCOI) as a genetic marker. Forty-six mtCOI sequences of 506 bp long were collected from ten localities, eight geographically isolated and two connected. The sequences were used for population genetic and phylogeographic analyses. Our results showed a low genetic diversity within populations but high between populations. There was a deep phylogeographic structure among geographically isolated populations but a lack of such structure in the connected habitats. Among geographically isolated populations, sequence divergence was revealed, ranging from 1.8% between Java and Sumatra populations to 12.2% between Malaysia and Vietnam. An indication of structuring was also observed among localities that are geographically closer but without connectivity. We conclude that despite high dispersal capacity, the joint effects of historical events, long-term geographic isolation associated with sea level oscillation during the Pleistocene, and restricted gene flow related to lack of habitat connectivity have shaped the phylogeographic structure within the O. vittatus over the Sundaland.

Development of hydro-mechanical-damage coupled model for low to intermediate radioactive waste disposal concrete silos (방사성폐기물 처분 사일로의 손상연동 수리-역학 복합거동 해석모델 개발)

  • Ji-Won Kim;Chang-Ho Hong;Jin-Seop Kim;Sinhang Kang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제26권3호
    • /
    • pp.191-208
    • /
    • 2024
  • In this study, a hydro-mechanical-damage coupled analysis model was developed to evaluate the structural safety of radioactive waste disposal structures. The Mazars damage model, widely used to model the fracture behavior of brittle materials such as rocks or concrete, was coupled with conventional hydro-mechanical analysis and the developed model was verified via theoretical solutions from literature. To derive the numerical input values for damage-coupled analysis, uniaxial compressive strength and Brazilian tensile strength tests were performed on concrete samples made using the mix ratio of the disposal concrete silo cured under dry and saturated conditions. The input factors derived from the laboratory-scale experiments were applied to a two-dimensional finite element model of the concrete silos at the Wolseong Nuclear Environmental Management Center in Gyeongju and numerical analysis was conducted to analyze the effects of damage consideration, analysis technique, and waste loading conditions. The hydro-mechanical-damage coupled model developed in this study will be applied to the long-term behavior and stability analysis of deep geological repositories for high-level radioactive waste disposal.

Relationship of Radon-222 and Chemical Composition of Groundwater as a Precursor of Earthquake (지진 전조인자로서 지하수내 라돈 및 화학성분의 상관성 연구)

  • Jeong, Chan Ho;Park, Jun Sik;Lee, Yong Cheon;Lee, Yu Jin;Yang, Jae Ha;Kim, Young Suk;Ou, Song Min
    • The Journal of Engineering Geology
    • /
    • 제28권2호
    • /
    • pp.313-324
    • /
    • 2018
  • In order to study the earthquake precursor in the Korean peninsula, long-term variations of chemical composition, radon-222, and water level were measured at depths (-60 m, -100 m) in the groundwater monitoring wells of the Daejeon and the Cheongwon area. The pH and electrical conductivity of groundwater in the monitoring wells showed some relationship with the Pohang earthquake. The ${HCO_3}^-$ and $Cl^-$ concentration of groundwater in the Daejeon and $Mg^{2+}$, $Cl^-$ and ${NO_3}^-$ in the Cheongwon showed some relation with the Pohang earthquake. However, it is not distinct to find the relationship between their variation and earthquake. The radon-222 concentration in Daejeon was observed a significant increase from a minimum of 162 Bq/L prior to the earthquake to 573 Bq/L right after the earthquake, that indicating a strong correlation with earthquakes. In the case of groundwater levels, it can not find some correlation between earthquakes and continuous decreasing trend in the monitoring wells of Daejeon and Cheongwon area. However, water level of a national groundwater observation well within 10 kilometers of Pohang epicenter was recorded as an abrupt drop right before the earthquake. Conclusively, although the location of monitoring wells is more than 180 kilometers apart from the epicenter of the Pohang earthquake, the radon gas in groundwater can be considered as a reliable candidate among earthquake precursors. The pH, electrical conductivity, ${HCO_3}^-$ and $Cl^-$ among hydrochemicals showed some correlation with earthquake should be monitored during a longer term to recognize distinctly as a precursor of earthquake.

A Study on the Structure and Function of the Underground Storage Facility in Baekje (백제 지하저장시설(地下貯藏施設)의 구조와 기능에 대한 검토)

  • Shin, Jong-Kuk
    • Korean Journal of Heritage: History & Science
    • /
    • 제38권
    • /
    • pp.129-156
    • /
    • 2005
  • Increasing discovery cases of underground storage facilities made of earth, wood, or stone are being reported from the recent excavation survey of the Baekje relics. Accordingly, the purpose of this study is to examine the structure and function of the underground storage facilities of Baekje following a classification made by the type and building method as follows: plask shape, wooden box shape, and stone box shape. The plask shape storage is the most representative underground storage of Baekje that has been found in numerous relics more than 600 sets around Hangang(Han River) and Geumgang(Geum River) from the Hansung period to Sabi period in Baekje Dynasty. It is a historical artefact as a part of the unique storage culture of Baekje around Hangang and Geumgang from the 3rd to 7th Century. Considering its structure and the example of Chinese one, it might had been used for a long-term storage of grains and various other items including earth wares. The storage facility in wooden box shape and stone box shape are found mostly in the relics Of Sabi period. Thus it might had taken some functions of the storage in traditional pouch shape which had decreased after the 6th Century. In particular, the wooden box shape and stone box shape storage required enormous labor force to build owing to their structure and building method. Thus, they were considered to had been used for official purposes in province fortress and citadel artefact. The wooden box shape storage facility is classified into flat rectangular type and square type based on the structure, and into Gagu type(架構式) and Juheol type(柱穴式) based on the building method. It might had been decided according to the geography and geological feature of the place where the storage was to be built. Considering the examples of Gwanbuk-ri relics and Weolpyong-dong relics, the wooden box shape storage facility might had been used for various items depending on the needs, including foods such as fruits and essential provisions at the military base. Considering the long-term food storage, the examples in Japan, and the functional characteristics of the underground storage facility, there is a possibility that the wooden and stone box shape storage facilities had been built so as to safely store important items in case of fire. This study is only a rudimentary examination for the storage facility in Baekje. Thus further studies are to be made specifically and comprehensively on the comparison with other regions, distribution pattern, discovered relics and artefacts, and functions.

Occurrence Characteristics and Existing Forms of U-Th Containing Minerals in KAERI Underground Research Tunnel(KURT) Granite (한국원자력연구원 지하처분연구시설(KURT) 화강암의 U-Th 함유광물 산출특성 및 존재형태)

  • Cho, Wan Hyoung;Baik, Min Hoon;Park, Tae-Jin
    • Economic and Environmental Geology
    • /
    • 제50권2호
    • /
    • pp.117-128
    • /
    • 2017
  • Occurrence characteristics and existing forms of U-Th containing minerals in KURT (KAERI Underground Research Tunnel) granite are investigated to understand long-term behavior of radionuclides in granite considered as a candidate rock for the geological disposal of high-level radioactive waste. KURT granite primarily consists of quartz, feldspar and mica. zircon, REE(Rare Earth Element)-containing monazite and bastnaesite are also identified. Besides, secondary minerals such as sericite, microcline and chlorite including quartz vein and calcite vein are observed. These minerals are presumed to be accompanied by a post-hydrothermal process. U-Th containing minerals are mainly observed at the boundaries of quartz, feldspar and mica, mostly less than $30{\mu}m$ in size. Quantitative analysis results using EPMA (Electron Probe Micro-Analyzer) show that 74.2 ~ 96.5% of the U-Th containing minerals consist of $UO_2$ (3.39 ~ 33.19 wt.%), $ThO_2$ (41.61 ~ 50.24 wt.%) and $SiO_2$ (15.43 ~ 18.60 wt.%). Chemical structure of the minerals calculated using EPMA quantitative analysis shows that the U-Th minerals are silicate minerals determined as thorite and uranothorite. The U-Th containing silicate minerals are formed by a magmatic and hydrothermal process. Therefore, KURT granite formed by a magmatic differentiation is accompanied by an alteration and replacement owing to a hydrothermal process. U-Th containing silicate minerals in KURT granite are estimated to be recrystallized by geochemical factors and parameters such as temperature, pressure and pH owing to the hydrothermal process. By repeated dissolution/precipitation during the recrystallization process, U-Th containing silicate minerals such as thorite and uranothorite are formed according to the variation in the concentrated amount of U and Th.