DOI QR코드

DOI QR Code

Intraspecific diversity and phylogeography of bony lip barb, Osteochilus vittatus, in Sundaland, as revealed by mitochondrial cytochrome oxidase I (mtCOI)

  • Imron Imron (Research Center for Fishery, National Research and Innovation Agency) ;
  • Fajar Anggraeni (Research Center for Fishery, National Research and Innovation Agency) ;
  • Wahyu Pamungkas (Research Center for Fishery, National Research and Innovation Agency) ;
  • Huria Marnis (Research Center for Fishery, National Research and Innovation Agency) ;
  • Yogi Himawan (Research Center for Fishery, National Research and Innovation Agency) ;
  • Dessy Nurul Astuti (Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency) ;
  • Flandrianto Sih Palimirmo (Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency) ;
  • Otong Zenal Arifin (Research Center for Applied Zoology, National Research and Innovation Agency) ;
  • Jojo Subagja (Research Center for Applied Zoology, National Research and Innovation Agency) ;
  • Daniel Frikli Mokodongan (Research Center for Biosystematics and Evolution, National Research and Innovation Agency) ;
  • Rahmat Hidayat (Research Center for Fishery, National Research and Innovation Agency)
  • Received : 2023.09.06
  • Accepted : 2023.12.04
  • Published : 2024.03.31

Abstract

Life history characteristics, habitat landscape, and historical events are believed to have shaped the patterns of genetic variation in many taxa. The bony lip barb, Osteohilus vittatus, represent a potamodromous fish that complete all life cycle in freshwater and is widely distributed in Southeast Asia. It usually lives in small rivers and other freshwater habitats, and movement between habitats for either food or reproduction has been typical. These life history characteristics may promote gene flow, leading to less structured populations. However, many freshwater habitats are fragmented, which restricts gene flow. We investigate how this interplay has shaped patterns of genetic variation and phylogeographic structure within this species in the Sundaland, a biodiversity hotspot with a complex geological history, using mitochondrial cytochrome oxidase I (mtCOI) as a genetic marker. Forty-six mtCOI sequences of 506 bp long were collected from ten localities, eight geographically isolated and two connected. The sequences were used for population genetic and phylogeographic analyses. Our results showed a low genetic diversity within populations but high between populations. There was a deep phylogeographic structure among geographically isolated populations but a lack of such structure in the connected habitats. Among geographically isolated populations, sequence divergence was revealed, ranging from 1.8% between Java and Sumatra populations to 12.2% between Malaysia and Vietnam. An indication of structuring was also observed among localities that are geographically closer but without connectivity. We conclude that despite high dispersal capacity, the joint effects of historical events, long-term geographic isolation associated with sea level oscillation during the Pleistocene, and restricted gene flow related to lack of habitat connectivity have shaped the phylogeographic structure within the O. vittatus over the Sundaland.

Keywords

Acknowledgement

This research was supported by a grant received from the Ministry of Marine Affairs and Fisheries 2021 and the National Research and Innovation Agency 2022, number 2860/II.7/HK.01.00/8/2022.

References

  1. Adamson EAS, Hurwood DA, Mather PB. A reappraisal of the evolution of Asian snakehead fishes (Pisces, Channidae) using molecular data from multiple genes and fossil calibration. Mol Phylogenet Evol. 2010;56:707-17.  https://doi.org/10.1016/j.ympev.2010.03.027
  2. Allendorf FW, Berry O, Ryman N. So long to genetic diversity, and thanks for all the fish. Mol Ecol. 2014;23:23-5.  https://doi.org/10.1111/mec.12574
  3. Avise JC. Phylogeography: retrospect and prospect. J Biogeogr. 2009;36:3-15.  https://doi.org/10.1111/j.1365-2699.2008.02032.x
  4. Avise JC. The history and purview of phylogeography: a personal reflection. Mol Ecol. 1998;7:371-9.  https://doi.org/10.1046/j.1365-294x.1998.00391.x
  5. Baran E, Samadee S, Teoh SJ, Tran TC. Fish and fisheries in the Sesan River Basin: MK3 catchment baseline, fisheries section. Project report. Mekong Challenge Program project MK3 "Optimizing the management of a cascade of reservoirs at the catchment level". Phnom Penh: The WorldFish Center; 2011. 
  6. Barreto SB, Lacey Knowles L, Mascarenhas R, Affonso PRAM, Batalha-Filho H. Drainage rearrangements and in situ diversification of an endemic freshwater fish genus from north-eastern Brazilian rivers. Freshw Biol. 2022;67:759-73.  https://doi.org/10.1111/fwb.13879
  7. Bernatchez L. On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes. J Fish Biol. 2016;89:2519-56.  https://doi.org/10.1111/jfb.13145
  8. Corrander J, Marttinen P, Mantyniemi S. A Bayesian method for identification of stock mixtures from molecular marker data. Fish Bull. 2006;104:550-8. 
  9. Dahruddin H, Hutama A, Busson F, Sauri S, Hanner R, Keith P, et al. Revisiting the ichthyodiversity of Java and Bali through DNA barcodes: taxonomic coverage, identification accuracy, cryptic diversity and identification of exotic species. Mol Ecol Resour. 2017;17:288-99.  https://doi.org/10.1111/1755-0998.12528
  10. de Bruyn M, Ruber L, Nylinder S, Stelbrink B, Lovejoy NR, Lavoue S, et al. Paleo-drainage basin connectivity predicts evolutionary relationships across three Southeast Asian biodiversity hotspots. Syst Biol. 2013;62:398-410.  https://doi.org/10.1093/sysbio/syt007
  11. de Bruyn M, Stelbrink B, Morley RJ, Hall R, Carvalho GR, Cannon CH, et al. Borneo and Indochina are major evolutionary hotspots for southeast Asian biodiversity. Syst Biol. 2014;63:879-901.  https://doi.org/10.1093/sysbio/syu047
  12. Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. 
  13. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969-73.  https://doi.org/10.1093/molbev/mss075
  14. Elias SA. The quaternary. In: Reference module in Earth systems and environmental sciences. Amsterdam: Elsevier; 2013. 
  15. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783-91.  https://doi.org/10.2307/2408678
  16. Gonzalez-Tizon AM, Fernandez-Moreno M, Vasconcelos P, Gaspar MB, Martinez-Lage A. Genetic diversity in fishery-exploited populations of the banded murex (Hexaplex trunculus) from the southern Iberian Peninsula. J Exp Mar Biol Ecol. 2008;363:35-41.  https://doi.org/10.1016/j.jembe.2008.06.013
  17. Hall R. The origin of Sundaland. In: Procedings of Sundaland Resources 2014 MGEI Annual Convention; 2014; Palembang, Indonesia. 
  18. Harrison T, Krigbaum J, Manser J. Primate biogeography and ecology on the Sunda Shelf islands: a paleontological and zooarchaeological perspective. In: Lehman SM, Fleagle JG, editors. Primate biogeography: progress and prospects. New York, NY: Springer Science; 2006. p. 331-72. 
  19. Johnson C, Affolter MD, Inkenbrandt P, Mosher C. An introduction to geology. Davis, CA: LibreTexts; 2017. 
  20. Kaus A, Michalski S, Hanfling B, Karthe D, Borchardt D, Durka W. Fish conservation in the land of steppe and sky: evolutionarily significant units of threatened salmonid species in Mongolia mirror major river basins. Ecol Evol. 2019;9:3416-33.  https://doi.org/10.1002/ece3.4974
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111-20.  https://doi.org/10.1007/BF01731581
  22. Koskinen MT, Nilsson J, Veselov AJ, Potutkin AG, Ranta E, Primmer CR. Microsatellite data resolve phylogeographic patterns in European grayling, Thymallus thymallus, Salmonidae. Heredity. 2002;88:391-401.  https://doi.org/10.1038/sj.hdy.6800072
  23. Kottelat M. The fishes of the inland waters of Southeast Asia: a catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves and estuaries. Raffles Bull Zool. 2013; suppl 27:1-663. 
  24. Kumar S, Suleski M, Craig JM, Kasprowicz AE, Sanderford M, Li M, et al. TimeTree 5: an expanded resource for species divergence times. Mol Biol Evol. 2022;39:msac174. 
  25. Leigh JW, Bryant D. Popart: full-feature software for haplotype network construction. Methods Ecol Evol. 2015;6:1110-6.  https://doi.org/10.1111/2041-210X.12410
  26. Lopez A, Bonasora MG. Phylogeography, genetic diversity and population structure in a Patagonian endemic plant. AoB PLANTS. 2017;9:plx017. 
  27. Nucleotide, Bethesda (MD). National Library of Medicine (US) [Internet]. National Center for Biotechnology Information [NCBI]. 2023 [cited 2023 Aug 23]. https://www.ncbi.nlm.nih.gov/nuccore 
  28. Parenti LR, Lim KKP. Fishes of the Rajang Basin, Sarawak, Malaysia. Raffles Bull Zool. 2005;Suppl 13:175-208. 
  29. Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update. Bioinformatics. 2012;28:2537-9.  https://doi.org/10.1093/bioinformatics/bts460
  30. Poulsen AF, Valbo-Jorgensen J. Fish migrations and spawning habits in the Mekong Mainstream: a survey using local knowledge (Basinwide). Vientiane, Lao People's Democratic Republic: Mekong River Commission; 2000. 
  31. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol. 2018;67:901-4.  https://doi.org/10.1093/sysbio/syy032
  32. Riede K. Global register of migratory species - from global to regional scales. Final report of the R&D Project 808 05 081. Bonn: Federal Agency for Nature Conservation; 2001. Report No.: 3784338453. 
  33. Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299-302.  https://doi.org/10.1093/molbev/msx248
  34. Smith BT, Escalante P, Hernandez Banos BE, Navarro-Siguenza AG, Rohwer S, Klicka J. The role of historical and contemporary processes on phylogeographic structure and genetic diversity in the Northern Cardinal, Cardinalis cardinalis. BMC Evol Biol. 2011;11:136. 
  35. Song LM, Munian K, Abd Rashid Z, Bhassu S. Characterisation of Asian snakehead murrel Channa striata (Channidae) in Malaysia: an insight into molecular data and morphological approach. Sci World J. 2013;2013:917506. 
  36. Syandri H. Morphological characterization of Asang fish (Osteochilus vittatus, Cyprinidae) in Singkarak Lake, Antokan River and Koto Panjang Reservoir West Sumatra Province, Indonesia. J Fish Aquac. 2014;5:158. 
  37. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022-7.  https://doi.org/10.1093/molbev/msab120
  38. Tan MP, Jamsari AFJ, Siti Azizah MN. Phylogeographic pattern of the striped snakehead, Channa striata in Sundaland: ancient river connectivity, geographical and anthropogenic signatures. PLOS ONE. 2012;7:e52089. 
  39. Voris HK. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr. 2000;27:1153-67.  https://doi.org/10.1046/j.1365-2699.2000.00489.x
  40. Wofford JEB, Gresswell RE, Banks MA. Influence of barriers to movement on within-watershed genetic variation of coastal cutthroat trout. Ecol Appl. 2005;15:628-37. https://doi.org/10.1890/04-0095