• Title/Summary/Keyword: Geological Term

Search Result 167, Processing Time 0.023 seconds

Classification and Characterization for Water Level Time Series of Shallow Wells at the National Groundwater Monitoring Stations (국가지하수관측소 충적관측정의 수위 변동 유형 분류 및 특성 비교)

  • Kim, Gyoo-Bum;Yum, Byoung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.86-97
    • /
    • 2007
  • The principal component analysis was performed to identify the general characteristics of groundwater level changes from 202 deep and 112 shallow wells monitoring data, respectively, which came from the National Groundwater Monitoring Stations operated by KWATER with time spans of 156 continuous weeks from 2003 to 2005. Eight principal components, which accounted for 80% of the variability of the original time series, were extracted for water levels of shallow and deep monitoring wells. As a result of cluster analysis using the loading value of three principal components for shallow wells, shallow monitoring wells were divided into 3 groups which were characterized with a response time to rainfall (Group 1: 4.6 days, Group 2: 24.1 days, Group 3: 1.4 days), average long-term trend of water level (Group 1: $2.05{\times}10^{-4}$ m/day, Group 2: $-7.85{\times}10^{-4}$ m/day, Group 3: $-3.51{\times}10^{-5}$ m/day) and water level difference (Group 1 < Group 2 < Group 3). Additionally, they showed significant differences according to a distance to the nearest stream from well (Group 3 < Group 2 < Group 1), topographic slope of well site (Group 3: plain region, Group 1: mountainous region) and groundwater recharge rate (Group 3 < Group 2 < Group 1) with a p-value of 0.05.

Assessing the Impact of Climate Change on Water Resources: Waimea Plains, New Zealand Case Example

  • Zemansky, Gil;Hong, Yoon-Seeok Timothy;Rose, Jennifer;Song, Sung-Ho;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.18-18
    • /
    • 2011
  • Climate change is impacting and will increasingly impact both the quantity and quality of the world's water resources in a variety of ways. In some areas warming climate results in increased rainfall, surface runoff, and groundwater recharge while in others there may be declines in all of these. Water quality is described by a number of variables. Some are directly impacted by climate change. Temperature is an obvious example. Notably, increased atmospheric concentrations of $CO_2$ triggering climate change increase the $CO_2$ dissolving into water. This has manifold consequences including decreased pH and increased alkalinity, with resultant increases in dissolved concentrations of the minerals in geologic materials contacted by such water. Climate change is also expected to increase the number and intensity of extreme climate events, with related hydrologic changes. A simple framework has been developed in New Zealand for assessing and predicting climate change impacts on water resources. Assessment is largely based on trend analysis of historic data using the non-parametric Mann-Kendall method. Trend analysis requires long-term, regular monitoring data for both climate and hydrologic variables. Data quality is of primary importance and data gaps must be avoided. Quantitative prediction of climate change impacts on the quantity of water resources can be accomplished by computer modelling. This requires the serial coupling of various models. For example, regional downscaling of results from a world-wide general circulation model (GCM) can be used to forecast temperatures and precipitation for various emissions scenarios in specific catchments. Mechanistic or artificial intelligence modelling can then be used with these inputs to simulate climate change impacts over time, such as changes in streamflow, groundwater-surface water interactions, and changes in groundwater levels. The Waimea Plains catchment in New Zealand was selected for a test application of these assessment and prediction methods. This catchment is predicted to undergo relatively minor impacts due to climate change. All available climate and hydrologic databases were obtained and analyzed. These included climate (temperature, precipitation, solar radiation and sunshine hours, evapotranspiration, humidity, and cloud cover) and hydrologic (streamflow and quality and groundwater levels and quality) records. Results varied but there were indications of atmospheric temperature increasing, rainfall decreasing, streamflow decreasing, and groundwater level decreasing trends. Artificial intelligence modelling was applied to predict water usage, rainfall recharge of groundwater, and upstream flow for two regionally downscaled climate change scenarios (A1B and A2). The AI methods used were multi-layer perceptron (MLP) with extended Kalman filtering (EKF), genetic programming (GP), and a dynamic neuro-fuzzy local modelling system (DNFLMS), respectively. These were then used as inputs to a mechanistic groundwater flow-surface water interaction model (MODFLOW). A DNFLMS was also used to simulate downstream flow and groundwater levels for comparison with MODFLOW outputs. MODFLOW and DNFLMS outputs were consistent. They indicated declines in streamflow on the order of 21 to 23% for MODFLOW and DNFLMS (A1B scenario), respectively, and 27% in both cases for the A2 scenario under severe drought conditions by 2058-2059, with little if any change in groundwater levels.

  • PDF

Analysis on Statistical Relationship between Groundwater Quality and Geology (지하수 수질과 지질의 통계학적 상관성 분석)

  • Kim, Jong-Tae;Park, Sang-Joo;Kang, Mee-A;Choo, Chang-Oh;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.445-453
    • /
    • 2007
  • The purposes of this study lie on understanding characteristic water-rock interaction mechanisms of groundwater in the Geochang, Hapcheon, and Changryeong areas and establishing correlation between geological factors and groundwater chemistry by statistical tools. Based on the statistical results from the relationship between rock types and groundwater chemistry, fluorine is correlated with Fe and Al in the diorite area, whereas it is correlated with Cl and $NO_3-N$ in the andesite area. Hardness, total solids, and $SO_4$ show that they are closely related to each other in all rock types, especially with highest relationship in sedimentary rocks. Although it is generally acknowledged that TDS increases with depths of aquifer due to the long term water-rock interaction, no remarkable relationship between well depth and water chemistry is found in this study. It appears that hydrogeological system in the study area may be complex or the path of water-rock interaction is inconsistent with well depth.

A Study on Optimization for Location and type of Dam Considering the Characteristic of Large Fault (대규모 단층특성을 고려한 최적 댐위치 및 형식 선정)

  • Kim, Han-Jung;Lyu, Young-Gwon;Kim, Young-Geun;Lim, Hee-Dae
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.227-242
    • /
    • 2012
  • Youngju multipurpose dam is planned to minimizing the damage by flood and obtaining the water for industrial use in Nakdong river region. Faults in rock mass have strong influences on the behaviors of dam structure. Thus, it is very important to analyse for the characteristics of fault rocks in dam design. However, due to the limitation of geotechnical investigation in design stages, engineers have to carry out the additional geological survey including directional boring to find the distribution of faults and the engineering properties of faults for stability of dam. Especially, the selection of location of dam and type of dam considering fault zone must be analyzed through various experimental and numerical analysis. In this study, various geological survey and field tests were carried out to analyse the characteristics of the large fault zone through the complex dam is designed in foundation region. Also, the distribution of structural geology, the shape of faults and the mechanical properties of fault rock were studied for the reasonable design of the location and type of dam for long-term stability of the complex dam.

Evaluation of Mechanical Interactions Between Bentonite Buffer and Jointed Rock Using the Quasi-Static Resonant Column Test (유사정적 공진주 시험을 이용한 벤토나이트 완충재와 절리 암반의 역학적 상호작용 특성 평가)

  • Kim, Ji-Won;Kang, Seok-Jun;Kim, Jin-Seop;Cho, Gye-Chun
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.561-577
    • /
    • 2021
  • The compacted bentonite buffer in a geological repository for high-level radioactive waste disposal is saturated due to groundwater inflow. Saturation of the bentonite buffer results in bentonite swelling and bentonite penetration into the rock discontinuities present around the disposal hole. The penetrated bentonite is exposed to groundwater flow and can be eroded out of the repository, resulting in bentonite mass loss which can affect the physical integrity of the engineered barrier system. Hence, the evaluation of buffer-rock interactions and coupled behavior due to groundwater inflow and bentonite penetration is necessary to ensure long-term disposal safety. In this study, the effects of the bentonite penetration and swelling on the physical properties of jointed rock mass were evaluated using the quasi-static resonant column test. Jointed rock specimens with bentonite penetration were manufactured using Gyeongju bentonite and hollow cylindrical granite rock discs obtained from the KAERI underground research tunnel. The effects of vertical stress and saturation were assessed using the P-wave and S-wave velocities for intact rock, jointed rock and jointed rock with bentonite penetration specimens. The joint normal and joint shear stiffnesses of each joint condition were inferred from the wave velocity results assuming an equivalent continuum. The joint normal and joint shear stiffnesses obtained from this study can be used as input factors for future numerical analysis on the performance evaluation of geological waste disposal considering rock discontinuities.

A Literature Review on Studies of Bentonite Alteration by Cement-bentonite Interactions (시멘트-벤토나이트 상호작용에 의한 벤토나이트 변질 연구사례 분석)

  • Goo, Ja-Young;Kim, Jin-Seok;Kwon, Jang-Soon;Jo, Ho Young
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.219-229
    • /
    • 2022
  • Bentonite is being considered as a candidate for buffer material in geological disposal systems for high-level radioactive wastes. In this study, the effect of cement-bentonite interactions on bentonite alteration was investigated by reviewing the literature on studies of cement-bentonite interactions. The major bentonite alteration by hyperalkaline fluids produced by the interaction of cementitious materials with groundwater includes cation exchange, montmorillonite dissolution, secondary mineral precipitation, and illitization. When the hyperalkaline leachate from the reaction of the cementitious material with the groundwater comes into contact with bentonite, montmorillonite, the main component of bentonite, is dissolved and a small amount of secondary minerals such as zeolite, calcium silicate hydrate, and calcite is produced. When montmorillonite is continuously dissolved, the physicochemical properties of bentonite may change, which may ultimately causes changes in bentonite performance as a buffer material such as adsorption capacity, swelling capacity, and hydraulic conductivity. In addition, the bentonite alteration is affected by various factors such as temperature, reaction period, pressure, composition of pore water, bentonite constituent minerals, chemical composition of montmorillonite, and types of interlayer cations. This study can be used as basic information for the long-term stability verification study of the buffer material in the geological disposal system for high-level radioactive wastes.

Engineering Geological Characteristics of Freeze-Thaw Weathered Gneiss in the Wonju Area, Korea

  • Um, Jeong-Gi;Woo, Ik;Park, Hyuck Jin
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.161-169
    • /
    • 2014
  • We present the results of an experimental physical weathering study that focuses on fresh and slightly weathered gneiss samples from the Wonju area of Korea. The study investigated changes in the physico-mechanical properties of these samples during accelerated laboratory-based weathering, including analyses of microfracture formation. The deteriorated samples used in the study were subjected to 100-150 freeze-thaw cycles, with index properties and microfracture geometries measured between each cycle. Each complete freeze-thaw cycle lasted 24 hours, and consisted of 2 hours of saturation in a vacuum chamber, 8 hours of freezing at $-21^{\circ}C{\pm}1^{\circ}C$, and 14 hours of thawing at room temperature. Specific gravity and seismic velocity values were negatively correlated with the number of freeze-thaw cycles, whereas absorption values tended to increase. The amount of deterioration of the rock samples was dependent on the degree of weathering of the rock prior to the start of the analysis. Absorption, specific gravity, and seismic velocity values can be used to infer the amount of physical weathering experienced by a gneiss in the study area. The sizes and density of microfracture in the rock specimens varied with the number of freeze-thaw cycles. We found that box fractal dimensions can be used to quantify the formation and propagation of microfracture in the samples. In addition, these box fractal dimensions can be used as a weathering index for the mid-and long-term prediction of rock weathering. The present results indicate that accelerated-weathering analysis can provide a detailed overview of the weathering characteristics of deteriorated rocks.

Genotoxicity (DNA damage) on Blood Cells of Parrot Fish (Oplegnathus fasciatus) Exposed to Acidified Seawater Making of CO2 (이산화탄소로 산성화된 해수에 노출된 돌돔(Oplegnathus fasciatus) 혈구세포에 대한 유전독성(DNA 손상))

  • Choi, Tae Seob;Lee, Ji-Hye;Sung, Chan-Gyoung;Lee, Jung-Suk;Park, Young-Gyu;Kang, Seong-Gil
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.483-492
    • /
    • 2014
  • DNA damage such as genotoxicity was identified with comet assay, which blood cell of a marine parrot fish (Oplegnathus fasciatus) was exposed to an acidified seawater, lowered pH gradient making of $CO_2$ gas. The gradient of pH were 8.22, 8.03, 7.81, 7.55 with control as HBSS solution with pH 7.4. DNA tail moment of fish blood cell was $0.548{\pm}0.071$ exposed seawater of pH 8.22 condition, on the other hand, DNA tail moment $1.601{\pm}0.197$ exposed acidified seawater of pH 7.55 lowest condition. The approximate difference with level of DNA damage was 2.9 times between highest and lowest of pH. DNA damage with decreasing pH was significantly increased with DNA tail moment on blood cell of marine fish (ANOVA, p < 0.001). Ocean acidification, especially inducing the leakage of sequestered $CO_2$ in geological structure is a consequence from the burning of fossil fuels, and long term effects on marine habitats and organisms are not fully investigated. The physiological effects on adult fish species are even less known. This result shown that the potential of dissolved $CO_2$ in seawater was revealed to induce the toxic effect on genotoxicity such as DNA breakage.

A Study on the Slope Stability Assessment of Seokguram Region in Gyeongju (경주 석굴암 주변 비탈면의 안정성에 관한 연구)

  • Lee, Kwang-Wu;Kim, Seung-Hyun;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.139-149
    • /
    • 2017
  • The maintenance, repair, and reinforcement projects and structural stability assessments of Seokguram have primarily focused on examining the condition of stone members of Seokguram and the concrete dome structure for Seokguram. However, a 12 m-high rock slope located behind Seokguram raises a concern of slope failure and rockfall, which may reduce stability of Seokguram. It is also unclear whether the soil slopes and masonry wall at the side and the front of Seokguram have sufficient long-term stability against localized heavy rains and earthquakes, which have been frequent in recent years. The present study investigates the ground and the slopes around Seokguram using detailed field survey to identify geographical and geological risk factors, and assess structural stability of the exposed rock mass behind and the slope in front of Seokguram and the masonry wall using stability analysis.

Development of Riverbank Filtration Water Supply and Return System for Sustainable Green House Heating and Cooling (지속가능 온실 냉난방을 위한 강변여과수 취수 및 회수시스템 개발)

  • Cho, Yong;Kim, Dae-Geun;Kim, Hyoung-Soo;Moon, Jong-Pil
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.20-29
    • /
    • 2012
  • The green house on the waterfront is air-conditioned by a water-source heat pump system with riverbank filtration water. In order to supply riverbank filtration water in alluvium aquifer, the riverbank filtration facility for water intake and recharge, two pumping wells and one recharge well, has been constructed. The research site in Jinju, Korea was chosen as a good site for riverbank filtration water supply by the surface geological survey, electrical resistivity soundings, and borehole surveys. In the results of two boreholes drilling at the site, it was revealed that the groundwater table is about 3 m under the ground, and that the sandy gravel aquifer layer in the thickness of 6.5 m and 3.5 m occurs at 5 m and 7 m in depth below the ground level respectively. To prevent the recharge water from affecting the pumped water which might be used as heat source or sink, the distance between pumping and recharge wells is designed at least 70 m with a quarter of recharged flow rate. It is predicted that the transfer term, the recharge water affects the pumping well, is over 6 months of heating season. Hydrogeological simulation and underground water temperature measurement have been carried out for the pumping and recharge well positions in order to confirm the capability of sustainable green house heating and cooling.