• Title/Summary/Keyword: Geological Data

Search Result 1,057, Processing Time 0.028 seconds

Spatial Integration of Multiple Data Sets regarding Geological Lineaments using Fuzzy Set Operation (퍼지집합연산을 통한 다중 지질학적 선구조 관련자료의 공간통합)

  • 이기원;지광훈
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.49-60
    • /
    • 1995
  • Features of geological lineaments generally play an important role at the data interpretation concerned geological processes, mineral exploration or natural hazard risk estimation. However, there are intrinsically discordances between lineaments-related features extracted from surficial geological syrvey and those from satellite imagery;nevertheless, any data set contained those information should not be considred as less meaningful within their own task. For the purpose of effective utilization task of extracted lineaments, the mathematical scheme, based on fuzzy set theory, for practical integration of various types of rasterized data sets is studied. As a real application, the geological map named Homyeong sheet(1:50,000) and the Landset TM imageries covering same area were used, and then lineaments-related data sets such as lineaments on the geological map, lineaments extracted from a false-color image composite satellite, and major drainage pattern were utilized. For data fusion process, fuzzy membership functions of pixel values in each data set were experimentally assigned by percentile, and then fuzzy algebraic sum operator was tested. As a result, integrated lineaments by this well-known operator are regarded as newly-generated reasonable ones. Conclusively, it was thought that the implementation within available GISs, or the stand-alone module for general applications of this simple scheme can be utilized as an effective scheme can be utilized as an effective scheme for further studies for spatial integration task for providing decision-supporting information, or as a kind of spatial reasoning scheme.

Evaluation of the Geological Heritages in Ulsan Area, Korea (울산 지역 지질유산의 가치평가)

  • Sujin Ha;Yong-Un Chae;Hee-Cheol Kang;Hyoun Soo Lim
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.749-761
    • /
    • 2022
  • As the number of National and UNESCO Global Geoparks has increased, awareness of geological heritage and local government interests have also increased. In this study, data from the geological heritage sites in the Ulsan area were summarized, a practical use plan for geological heritage was prepared based on the assessment results, and the expected effects were also presented. The value for 33 of 112 geological heritage sites identified through literature surveys was evaluated. In terms of the geological heritage types in Ulsan, there were two geological, one geomorphological, and thirty mixed-heritage sites. In the context of the geological heritage of Ulsan, rivers and coastal topography were found to be dominant, and various geomorphological and geological features, such as fossils, folds, faults, shear zones, minerals, and ore deposits are included. Based on the assessment results, there were three, eighteen, nine, and three sites in Classes I, II, III, and IV, respectively. Considering the intrinsic and subsidiary values of geological heritage, the Gangdong Coast, Jujeon Coast, Taehwagang area, Daewangam area, the Daegokri-Cheonjeonri track sites, and Mujechineup are likely to be listed as potential geosites. When the endorsement of the geopark has been promoted alongside these geosites, it can contribute to the sustainable preservation and maintenance of the geosites, satisfy the demand for science education through geo-education, and support the sustainable development of the local economy following the detailed standards for geopark certification in the Natural Parks Act. This is expected to increase the brand value of Ulsan Metropolitan City.

Research Trends of Studies Related to the Geological Fieldwork Using Semantic Network Analysis: Focused on the Last 21 Years(2000-2020) (언어 네트워크를 이용한 야외지질답사 관련 연구 동향 분석: 최근 21년(2000~2020년)을 중심으로)

  • Jeong, Dong-Gwon
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.14 no.2
    • /
    • pp.173-192
    • /
    • 2021
  • The purpose of this study is to analyze the previous research on geological fieldwork from 2000 to 2020, examine the tasks that have been focused on, and suggest directions and implications for future geological fieldwork research. The data was conducted for the thesis searched on ScienceON and RISS in relation to geological fieldwork and journals listed in the Korean Citation Index(KCI), and the study title was analyzed using the semantic network analysis. For analysis, the data that had been pre-processed was visualized as a network by semantic network analysis, and frequency and centrality were analyzed. The centrality analysis was based on degree centrality and eigenvector centrality, and all analyzes were performed by dividing the entire study period into four periods: 2000-2005, 2006-2010, 2011-2015, and 2016-2020. As a result, research on geological fieldwork focused more on the development of geological field courses, and in particular, jeju island was actively discussed as a learning site. Also, the study was conducted on students rather than teachers, and among them, high school students showed high frequency and centrality. In addition, it can be seen that studies on the educational effect of geological fieldwork were discussed, either in connection with programs such as STEAM, free-semester program, or indirect geological fieldwork methods such as web, flash panorama, and 3D. This study is meaningful in that it suggests the direction of future research by looking back on the research on geological fieldwork that has been done so far.

Needs and Directions for Developing Localization Materials in Geology in Elementary Science Textbooks : Focused on the Unit of 'Strata and Fossils' (초등과학 교과서 지질 분야의 지역화 자료 개발의 필요성과 방향 : '지층과 화석' 단원을 중심으로)

  • Lim, Sungman
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.12 no.3
    • /
    • pp.184-197
    • /
    • 2019
  • The purpose of this study is to explore needs and the direction for the development of localization data in the geological field of elementary school. Many studies show that geology-related learning is highly effective in the form of direct learning, and It is reported that this learning has a positive effect on students' scientific attitudes. As such, the first-hand experience of the geological learning is outdoor geology learning and is the basis and core of the development of localization materials. However, the analysis of this study shows that the development of outdoor geology learning site is mainly conducted in some regions. In addition, considering that geological sites are distributed evenly throughout Korea, it is necessary to actively develop geological-related localization materials to learn elementary school geology-related units. In addition, some areas where outdoor geological study grounds were developed are composed only of learning places and no specific learning materials have been developed. In this regard, not only geological researchers but also field teachers working in the area need much effort. Development of localization material in the geological field needs to be developed at the level of material presented in the geology unit of the textbook. And in the actual class, it is desirable to use the textbook data and the developed localization data at the same time. In addition, the development of the outdoor geology field should be developed in consideration of the pre-experience-post activities so that learners can have various geological experiences.

Evaluation of Ku-band Ground-based Interferometric Radar Using Gamma Portable Radar Interferometer

  • Hee-Jeong, Jeong;Sang-Hoon, Hong;Je-Yun, Lee;Se-Hoon, Song;Seong-Woo, Jung;Jeong-Heon, Ju
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.65-76
    • /
    • 2023
  • The Gamma Portable Radar Interferometer (GPRI) is a ground-based real aperture radar (RAR) that can acquire images with high spatial and temporal resolution. The GPRI ground-based radar used in this study composes three antennas with a Ku-band frequency of 17.1-17.3 GHz (1.73-1.75 cm of wavelength). It can measure displacement over time with millimeter-scale precision. It is also possible to adjust the observation mode by arranging the transmitting and receiving antennas for various applications: i) obtaining differential interferograms through the application of interferometric techniques, ii) generation of digital elevation models and iii) acquisition of full polarimetric data. We introduced the hardware configuration of the GPRI ground-based radar, image acquisition, and characteristics of the collected radar images. The interferometric phase difference has been evaluated to apply the multi-temporal interferometric SAR application (MT-InSAR) using the first observation campaigns at Pusan National University in Geumjeong-gu, Busan.

Geophysical Exploration and Well Logging for the Delineation of Geological Structures in a Testbed (실험 부지에서의 지질구조 파악을 위한 물리탐사 및 물리검층)

  • Yu, Huieun;Shin, Jehyun;Kim, Bitnarae;Cho, Ahyun;Lee, Gang Hoon;Pyun, Sukjoon;Hwang, Seho;Yu, Young-Chul;Cho, Ho-Young;Nam, Myung Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.19-33
    • /
    • 2022
  • When subsurface is polluted, contaminants tend to migrate through groundwater flow path. The groundwater flow path is highly dependent upon underground geological structures in the contaminated area. Geophysical survey is an useful tool to identify subsurface geological structure. In addition, geophysical logging in a borehole precisely provides detailed information about geological characteristics in vicinity of the borehole, including fractures, lithology, and groundwater level. In this work, surface seismic refraction and electrical resistivity surveys were conducted in a test site located in Namyangju city, South Korea, along with well logging tests in five boreholes installed in the site. Geophysical data and well logging data were collected and processed to construct an 3D geological map in the site.

Slope Management Program of Available to an Urban Area (대도시지역에 적합한 사면관리프로그램)

  • Kim, Kyeong-Su;Cho, Yong-Chan;Chae, Byung-Gon;Song, Young-Suk;Lee, Choon-Oh
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.644-651
    • /
    • 2006
  • In general, a damage that occurs due to landslide or slope failure in urban areas is larger than that in rural areas. In order to reduce the damage, a program is necessary to categorize slopes based on properties and to manage them systematically. Based on the above necessity, a slope management program which is applicable to slope management in an urban area has been developed at Hwangryung mountain in Busan as a target area. The program has a function of systematic slope information constructed by slope ID number of each slope or sub-region of a mountain, making a slope data sheet, analysis and grouping of slope stability, and establishment of a data base. It can also be utilized practically by end users due to the convenient input, edition, printing, management and operation of slope data. For practical utilization of the developed program, a research related to construction of the slope management system for a regional area is demanded to be performed continuously. The supply and utilization of a web based slope management system would contribute to damage reduction.

  • PDF

Stability Analysis on the Substructure of Abutment in Limestone Basin (석회암층 교대 하부 구조물의 안정성 해석)

  • 최성웅;김기석
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.120-129
    • /
    • 2002
  • Natural cavitied were found at shallow depth during construction of a huge bridge in Cambro-Ordovician Limestone Basin in the central part or Korea. The distribution patterns of cavities in this area were investigated carefully with a supplementary field job such as a structural geological survey, a geophysical survey, and a rock mechanical test in laboratory or field. A structural geological mapping produced a detail geological map focusing the route of the Proposed highway. It suggested that there were three faults in this wet and these faults had an influence on the mechanism of natural cavities. Among many kinds of geophysical surveys, an electrical resistivity prospecting was applied first on the specific area that was selected by results from the geological survey. Many evidences far cavities were disclosed from this geophysical data. Therefore, a seismic tomography was tested on the target wet which was focused by results from the electrical resistivity Prospecting and was believed to have several large cavities. A distinct element numerical simulation using the UDEC was followed on the target area after completing all of field surveys. Data from field tests were directly dumped or extrapolated to numerical simulations as input data. It was verified from numerical analysis that several natural cavities underneath the foundation of the bridge should be reinforced Based on the project result, finally, most of fecundations far the bridge were re-examined and the cement grouting reinforcement was constructed on several foundations among them.

Rural Groundwater Monitoring Network in Korea (농어촌지하수 관측망)

  • Lee, Byung Sun;Kim, Young In;Choi, Kwang-Jun;Song, Sung-Ho;Kim, Jin Ho;Woo, Dong Kwang;Seol, Min Ku;Park, Ki Yeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.1-11
    • /
    • 2014
  • Rural groundwater monitoring network has been managed by Korea Rural Community Corporation (KRC) since 1998. The network consists of two kinds of subnetworks; rural groundwater management network (RGMN) and seawater intrusion monitoring network (SIMN). RGMN has been operated to promote a sound and sustainable development of rural groundwater within the concerned area for groundwater quality and quantity. SIMN has been operated to protect the crops against hazards by the saline water in coastal areas in which the shortage of irrigation water become a main problem for agriculture. Currently, a total of 283 monitoring wells has been installed; 147 wells in 79 municipalities for RGMN and 136 wells in 52 ones for SIMN, respectively. Two subnetworks commonly monitor three hydrophysical properties (groundwater level, temperature, and electric conductivity) every hour. Monitored data are automatically transferred to the management center located in KRC. Data are opened to the public throughout website named to be the Rural Groundwater Net (www.groundwater.or.kr). Annual reports involving well logging and hydrochemical data of RGMN and SIMN have been published and distributed to the rural water management office of each municipalities. In addition, anyone who concerns about RGMN an SIMN can freely download these reports throughout the Rural Groundwater Net as well.

Constructing Geological Cross-sections at Depth and Interpreting Faults Based on Limited Shallow Depth Data Analysis and Core Logging: Southern Section of the Yangsan Fault System, SE Korea (제한된 천부자료와 시추코어분석을 통한 심부지질단면도 작성과 단층 인지법: 한반도 남동부 양산단층대 주변에서의 적용)

  • Kim, Taehyung;Kim, Young-Seog;Lee, Youngmin;Choi, Jin-Hyuck
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.277-290
    • /
    • 2016
  • Deep geological cross-sectional data is generally not common nor easy to construct, because it is expensive and requires a great deal of time. As a result, geological interpretations at depth are limited. Many scientists attempt to construct geological cross-sections at depth using geological surface data and geophysical data. In this paper, we suggest a method for constructing cross-sections from limited geological surface data in a target area. The reason for this study is to construct and interpret geological cros-sections at depth to evaluate heat flow anomaly along the Yangsan fault. The Yangsan Fault passes through the south-eastern part of the Korean Peninsula. The cross-section is constructed from Sangbukmyeon to Unchonmyeon passing perpendicularly through the Yangsan Fault System trending NW-SE direction. The geological cross-section is constructed using the following data: (1) Lithologic distributions and main structural elements. (2) Extensity of sedimentary rock and igneous rock, from field mapping. (3) Fault dimension calculated based on geometry of exposed surface rupture, and (4) Seismic and core logging data. The Yangsan Fault System is composed of the Jain fault, Milyang fault, Moryang fault, Yangsan fault, Dongnae fault, and Ingwang fault which strike NNE-SSW. According to field observation, the western section of the Yangsan fault bounded by igneous rocks and in the eastern section sedimentary rocks are dominant. Using surface fault length we infer that the Yangsan Fault System has developed to a depth of kilometers beneath the surface. According to seismic data, sedimentary rocks that are adjacent to the Yangsan fault are thin and getting thicker towards the east of the section. In this study we also suggest a new method to recognize faults using core loggings. This analysis could be used to estimate fault locations at different scales.