• Title/Summary/Keyword: Geological

Search Result 3,323, Processing Time 0.031 seconds

Pre-conceptual Design of a Spent PWR Fuel Disposal Container (가압경수로형 사용후핵연료 처분용기의 예비 개념설계 평가)

  • CHO Dong-Keun;CHOI Jongwon;Lee Yang;CHOI Heui-Joo;LEE Jong-Youl
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.153-162
    • /
    • 2005
  • In this Paper, sets of engineering analyses were conducted to renew the overall dimensions and configurations of a disposal container proposed as a prototype in the previous study. Such efforts and calculation results can provide new design variables such as the inner basket array type and thickness of the outer shell and the lid & bottom of a spent nuclear fuel disposal container. These efforts include radiation shielding and nuclear criticality analyses to check to see whether the dimensions of the container proposed from the mechanical structural analyses can provide a nuclear safety or not. According to the results of the structural analysis of a PWR disposal container by varying the diameter of the container insert, the Maximum Von Mises stress from the 102 cm container meets the safety factor of 2.0 for both extreme and normal load conditions. This container also satisfies the nuclear criticality and radiation safety limits. This decrease in the diameter results in a weight loss of a container by ${\~}$20 tons.

  • PDF

A Comparative Study on the $CO_2$ Storage Method ($CO_2$ 해양처리방안 비교연구)

  • Jung, R.T.;Kang, S.G.;Kang, C.G.;Park, Y.C.;Yoon, C.H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.3
    • /
    • pp.111-115
    • /
    • 2005
  • The concentration of atmosphere carbon dioxide ($CO_2$) which is one of the major greenhouse gas, continues to rise by the increase in fossil fuel consumption, forest destruction and decrease of biological diversity, etc. In order to weaken the global warming, a reduction of $CO_2$ discharge to the atmosphere is required. The $CO_2$ ocean sequestration technology utilizes the intrinsic oceanic capacity of $CO_2$ absorption, diluting and/or dispersing the liquefied $CO_2$ in the deep ocean (>2,000 m). This geo-engineering approach is regarded as one of the occasions to mitigate the $CO_2$ concentration in the atmosphere. Some developed centuries such as Japan, USA, Norway, etc. have intensively carried out the projects on the research and development of $CO_2$ ocean sequestration since 1990s. There have been several approaches to develop the relative technological system to mitigate the increasing $CO_2$, however, there was no systematic and practical R&D programme in the $CO_2$ ocean sequestration. This paper has described the state of the art on the three optional methods of $CO_2$ sequestration, and compared with them in the aspect of the applicable possibility.

  • PDF

Space Radiation Effect on Si Solar Cells (우주 방사능에 의한 실리콘 태양 전지의 특성 변화)

  • Lee, Jae-Jin;Kwak, Young-Sil;Hwang, Jung-A;Bong, Su-Chang;Cho, Kyung-Seok;Jeong, Seong-In;Kim, Kyung-Hee;Choi, Han-Woo;Han, Young-Hwan;Choi, Yong-Woon;Seong, Baek-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.435-444
    • /
    • 2008
  • High energy charged particles are trapped by geomagnetic field in the region named Van Allen Belt. These particles can move to low altitude along magnetic field and threaten even low altitude spacecraft. Space Radiation can cause equipment failures and on occasions can even destroy operations of satellites in orbit. Sun sensors aboard Science and Technology Satellite (STSAT-l) was designed to detect sun light with silicon solar cells which performance was degraded during satellite operation. In this study, we try to identify which particle contribute to the solar cell degradation with ground based radiation facilities. We measured the short circuit current after bombarding electrons and protons on the solar cells same as STSAT-1 sun sensors. Also we estimated particle flux on the STSAT-l orbit with analyzing NOAA POES particle data. Our result clearly shows STSAT-l solar cell degradation was caused by energetic protons which energy is about 700keV to 1.5MeV. Our result can be applied to estimate solar cell conditions of other satellites.

Actual Vegetation of Dodamsambong (Scenic Site no. 44) and Danyangseokmoon (Scenic Site no. 45) in Danyang-gun (단양군 도담삼봉과 단양석문 일대의 현존식생)

  • Choi, Byoung-Ki
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.2
    • /
    • pp.116-123
    • /
    • 2014
  • The description of vegetation cover and floral composition was undertaken in terms of phytosociological study in Dodamsambong(scenic site no. 44) and Danyangseokmoon(no. 45). In this study a total of 17 $relev{\acute{e}}s$ containing 144 taxa were collected and analyzed. Eight plant communities are differentiated, grouped into 4 physiognomic types: forest type(Buxus microphylla var. koreana-Thuja orientalis community, Tilia mandshurica-Quercus variabilis community, and Cynanchum wilfordii-Pinus densiflora community), mantle type(Cardamine leucantha-Neillia uekii community), secondary meadow type(Galium kinuta-Spodiopogon sibiricus community, Diarthron linifolium-Zoysia japonica community), and crevice type(Patrinia rupestris-Selaginella stauntoniana community, Hypodematium glandulosopilosum community). The vegetation of Dodamsambong and Danyangseokmoon is characterized by local flora, such as calciphilous plants, geological distribution-limit species, and endemic species. The soil depth, slope, and human impact have been identified as the most important differentiating ecological factors. Buxus microphylla var. koreana-Thuja orientalis community, Tilia mandshurica-Quercus variabilis community, and Patrinia rupestris-Selaginella stauntoniana community were evaluated highly by National Vegetation Naturalness. In order to restore the value of specific landscape for scenic site, we should improve the problems of protected area such as wrong management on habitat, forest fragmentation by facilities and decline in vegetation by lack of growing the next succession.

Variation of Harbor Response due to Construction of A New Port in Youngil Bay (영일만 신항 건설에 따른 항만 정온도의 변화)

  • Lee, Hoon;Lee, Hak-Seung;Yang, Sang-Yong;Lee, Joong-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.179-186
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Pohang Old Harbor and Pohang New Port, etc. due to construction of New Port in Youngil Bay. This type of trial might be a milestone for port development in macroscale, where the induced impact analysis in the existing port due to the developemnt could be easily neglected.

  • PDF

Effect of Bioluminescence Stimulating Agent of the Genetically Engineered Strain KG1206 on the Monitoring of the Petroleum Hydrocarbon Contaminated Groundwater Samples (발광유전자 재조합 균주 활성 촉진 조건이 석유계 탄화수소 오염지하수 모니터링에 미치는 영향)

  • Ko, Kyung-Seok;Kong, In-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.79-84
    • /
    • 2008
  • This paper describes the application of bioluminescence stimulating agents on a genetically engineered microorganism, Pseudomonas putida mt-2 KG1206, to monitor toluene analogs using in groundwater samples from petroleum hydrocarbon contaminated sites. The maximum bioluminescent response with pure chemicals followed in the order: m-methyl benzyl alchohol > m-toluate > toluene > m-xylene > benzoate > p-xylene > o-xylene. Generally, the bioluminescence production of strain mixed with groundwater samples was dependent on the contaminated total inducer concentrations. However, few samples showed opposite results, where these phenomena may be caused by the complexicity of environmental samples. Two chemicals, SL(sodium lactate) and KNO$_3$, were tested to determine a better bioluminescence stimulant. Both chemicals stimulate the bioluminescence activity of strain KG1206, however, a slightly high bioluminescence was observed with nitrogen chemical. This selected stimulant was then tested on samples collected from contaminated groundwater samples. The bioluminescence activity of all samples mixed with the strain was stimulated with KNO$_3$ amendment. This suggests that the low bioluminescence activity exhibited by the environmental groundwater samples can be stimulated by amending the culture with a proper agent, such as nitrogen compound. These findings would be useful, especially, when strain was used to monitor the groundwater samples contaminated with low inducer contaminants. Overall, the results of this study found the ability of bioluminescence producing bacteria to biosensor a specific group of environmental contaminants, and suggest the potential for more efficient preliminary application of this engineered strain in a field-ready bioassay.

The geochemical characteristic and quality assessment of surface sediments in Sihwa Lake (시화호 표층퇴적물의 특성과 오염도 평가)

  • Ju, Jae Sik;Son, Moonho;Cho, Hyeon-Seo;Kim, Pyoung-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.333-338
    • /
    • 2016
  • The purpose of this study was to understand the pollution level of the surface sediment of Sihwa Lake by assessing its geochemical characteristics and investigating the spatial distribution of trace metals and organic matter. In the surface sediment of Sihwa lake, the mean grain size was between 2.94 and 6.35 Ø and the main type of sediment was sandy silt. The concentrations of As, Co, Cr, Ni, V and Li among the metal elements in the surface sediment were correlated with the mean crust concentration (p<0.05). Based on the strong correlation between the metals (Cd, Cu, Pb and Zn) and organic matter (Ignition Loss), the concentrations of these metal elements seem to be controlled by the organic matter dilution effect. The trace metal pollution level, determined by applying the Republic of Korea Marine environmental standard and the US National Oceanic and Atmospheric Administration's sediment quality guidelines, showed the pollution level of As to be either close to or in excess of the above-mentioned standards at almost all levels. The enrichment factor and geoaccumulation index of As showed that there was an incremental increase of pollution by elements other than V, Cr, Co, Fe, Al and Mn. Moreover, the nearby industrial area and dike were more polluted than the other areas, so the surface sediments in Sihwa lake should be monitored by taking into consideration the geological variations.

Ground penetrating radar testing in a sand tank for detection of buried pipes (매설파이프 감지를 위한 지하 투과 레이다 모래 모형조 실험)

  • Kim, Hyeong Su
    • Journal of the Korean Geophysical Society
    • /
    • v.1 no.1
    • /
    • pp.59-68
    • /
    • 1998
  • Ground penetrating radar (GPR) experiments were performed in a sand tank to study the ability of detection of buried pipes and to characterize the signal of the reflection wave. The ratios of diameter of buried pipes to the depth were set 4 up to 24 % and materials were metal, synthetic resin, and wood. In case of groundwater table below buried materials, strong reflection signals were observed irrespective of diameter and depth except for wood. While it is very difficult to detect the reflection signals in case that the groundwater table is set to higher than buried materials. The reflection signals from the bottom of the sand tank, however, were clearly observed even in case of higher groundwater table. This implies that the weak reflection signals from the buried materials are not all due to the wave attenuation. The vertical reflection profiling method is recommended in case that the object of the survey is to find horizontal position of buried material because this method has the advantage in cost and time of survey. However, the full or partial CMP gather method is recommended in case that the objects of the survey are to get the detailed subsurface information, i.e. the depth to buried material, interval velocity of geological layer, and mapping the groundwater table.

  • PDF

Geochemical Characteristics of Deep Granitic Groundwater in Korea (국내 화강암질암내 심부지하수의 지구화학적 특성)

  • 이종운;전효택;전용원
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.4
    • /
    • pp.199-211
    • /
    • 1997
  • As a part of study on geological disposal of radioactive waste, hydrogeochemical characteristics of deep granitic groundwater in Korea were investigated through the construction of a large geochemical dataset of natural water, the examination on the behaviour of dissolved constituents, and the consideration of phase stability based on thermodynamic approach. In granitic region, the contents of total dissolved solids increase progressively from surface waters to deep groundwaters, which indicates the presence of more concentrated waters at depth due to water-rock interaction. The chemical composition of groundwater evolves from initial $Ca^{2+}$-(C $l^{-}$+S $O_4$$^{2-}$) or $Ca^{2+}$-HC $O_3$$^{-}$ type to final N $a^{+}$-HC $O_3$$^{-}$ or N $a^{+}$-(C $l^{-}$+S $O_4$$^{2-}$) type, via $Ca^{2+}$-HC $O_3$$^{-}$ type. Three main mechanisms seem to control the chemical composition of groundwater in the granitic region; 1) congruent dissolution of calcite at shallower depth, 2) calcite precipitation and incongruent dissolution of plagioclase at deeper depth, and 3) kaolinite-smectite or/and kaolinite-illite reaction at equilibrium at deeper depth. The behaviour of dissolved major cations (C $a^{2+}$, $K^{+}$, $Mg^{2+}$, M $a^{+}$) and silica is likely to be controlled by these reactions.

  • PDF

A Study of 3D Ore-Modeling by Integrated Analysis of Borehole and Geophysical Data (시추자료와 물리탐사자료의 복합해석을 통한 3차원 광체 모델링 연구)

  • Noh, Myounggun;Oh, Seokhoon;Ahn, Taegyu
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.257-267
    • /
    • 2013
  • 3-D ore modeling was performed to understand the configuration of ore bodies by integrated analysis of borehole and geophysical data in iron-mine area. Five representative indices of rocks were designated, which were obtained from geological survey and borehole. The five indices of rocks were geostatistically simulated by Sequential Indicator Simulation method to delineate boundary of the ore bodies. And Ordinary Kriging and Sequential Gaussian Simulation was applied to make secondary information using resistivity data from magnetotellurics and DC resistivity survey, and this information was used for simple kriging with local varying means, one of integrated kriging techniques. From the correlation analysis between each properties, it was found that high grade of ore is characterized by increased density, whereas the electrical resistivity decreases. With the integrated results of geophysical and borehole data, it was also found that the real configuration of ore body was similar to the modeled result and information about ore grade in 3-D space was obtained.