• Title/Summary/Keyword: Geodesic curvature

Search Result 73, Processing Time 0.019 seconds

S-CURVATURE AND GEODESIC ORBIT PROPERTY OF INVARIANT (α1, α2)-METRICS ON SPHERES

  • Huihui, An;Zaili, Yan;Shaoxiang, Zhang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.33-46
    • /
    • 2023
  • Geodesic orbit spaces are homogeneous Finsler spaces whose geodesics are all orbits of one-parameter subgroups of isometries. Such Finsler spaces have vanishing S-curvature and hold the Bishop-Gromov volume comparison theorem. In this paper, we obtain a complete description of invariant (α1, α2)-metrics on spheres with vanishing S-curvature. Also, we give a description of invariant geodesic orbit (α1, α2)-metrics on spheres. We mainly show that a Sp(n + 1)-invariant (α1, α2)-metric on S4n+3 = Sp(n + 1)/Sp(n) is geodesic orbit with respect to Sp(n + 1) if and only if it is Sp(n + 1)Sp(1)-invariant. As an interesting consequence, we find infinitely many Finsler spheres with vanishing S-curvature which are not geodesic orbit spaces.

UNIQUENESS OF FAMILIES OF MINIMAL SURFACES IN ℝ3

  • Lee, Eunjoo
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1459-1468
    • /
    • 2018
  • We show that an umbilic-free minimal surface in ${\mathbb{R}}^3$ belongs to the associate family of the catenoid if and only if the geodesic curvatures of its lines of curvature have a constant ratio. As a corollary, the helicoid is shown to be the unique umbilic-free minimal surface whose lines of curvature have the same geodesic curvature. A similar characterization of the deformation family of minimal surfaces with planar lines of curvature is also given.

A CHARACTERIZATION OF MAXIMAL SURFACES IN TERMS OF THE GEODESIC CURVATURES

  • Eunjoo Lee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.67-74
    • /
    • 2024
  • Maximal surfaces have a prominent place in the field of differential geometry, captivating researchers with their intriguing properties. Bearing a direct analogy to the minimal surfaces in Euclidean space, investigating both their similarities and differences has long been an important issue. This paper is aimed to give a local characterization of maximal surfaces in 𝕃3 in terms of their geodesic curvatures, which is analogous to the minimal surface case presented in [8]. We present a classification of the maximal surfaces under some simple condition on the geodesic curvatures of the parameter curves in the line of curvature coordinates.

HORIZONTALLY HOMOTHETIC HARMONIC MORPHISMS AND STABILITY OF TOTALLY GEODESIC SUBMANIFOLDS

  • Yun, Gab-Jin;Choi, Gun-Don
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.493-511
    • /
    • 2008
  • In this article, we study the relations of horizontally homothetic harmonic morphisms with the stability of totally geodesic submanifolds. Let $\varphi:(M^n,g)\rightarrow(N^m,h)$ be a horizontally homothetic harmonic morphism from a Riemannian manifold into a Riemannian manifold of non-positive sectional curvature and let T be the tensor measuring minimality or totally geodesics of fibers of $\varphi$. We prove that if T is parallel and the horizontal distribution is integrable, then for any totally geodesic submanifold P in N, the inverse set, $\varphi^{-1}$(P), is volume-stable in M. In case that P is a totally geodesic hypersurface the condition on the curvature can be weakened to Ricci curvature.

KÄHLER SUBMANIFOLDS WITH LOWER BOUNDED TOTALLY REAL BISECTIONL CURVATURE TENSOR II

  • Pyo, Yong-Soo;Shin, Kyoung-Hwa
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.279-293
    • /
    • 2002
  • In this paper, we prove that if every totally real bisectional curvature of an n($\geq$3)-dimensional complete Kahler submanifold of a complex projective space of constant holomorphic sectional curvature c is greater than (equation omitted) (3n$^2$+2n-2), then it is totally geodesic and compact.

LIGHTLIKE HYPERSURFACES OF A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE

  • Jin, Dae-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.763-770
    • /
    • 2012
  • In this paper, we study the geometry lightlike hypersurfaces (M, $g$, S(TM)) of a semi-Riemannian manifold ($\tilde{M}$, $\tilde{g}$) of quasi-constant curvature subject to the conditions: (1) The curvature vector field of $\tilde{M}$ is tangent to M, and (2) the screen distribution S(TM) is either totally geodesic in M or totally umbilical in $\tilde{M}$.

ON THE GEOMETRY OF RATIONAL BÉZIER CURVES

  • Ceylan, Ayse Yilmaz;Turhan, Tunahan;Tukel, Gozde Ozkan
    • Honam Mathematical Journal
    • /
    • v.43 no.1
    • /
    • pp.88-99
    • /
    • 2021
  • The purpose of this paper is to assign a movable frame to an arbitrary point of a rational Bézier curve on the 2-sphere S2 in Euclidean 3-space R3 to provide a better understanding of the geometry of the curve. Especially, we obtain the formula of geodesic curvature for a quadratic rational Bézier curve that allows a curve to be characterized on the surface. Moreover, we give some important results and relations for the Darboux frame and geodesic curvature of a such curve. Then, in specific case, given characterizations for the quadratic rational Bézier curve are illustrated on a unit 2-sphere.

ON THE GEODESIC SPHERES OF THE 3-DIMENSIONAL HEISENBERG GROUPS

  • Jang, Chang-Rim;Kim, Rok;Park, Keun
    • East Asian mathematical journal
    • /
    • v.21 no.1
    • /
    • pp.113-122
    • /
    • 2005
  • Let $\mathbb{H}^3$ be the 3-dimensional Heisenberg group equipped with a left-invariant metric. In this paper, We characterize the Gaussian curvatures of the geodesic spheres on $\mathbb{H}^3$.

  • PDF