• Title/Summary/Keyword: Geodesic Sphere

Search Result 19, Processing Time 0.023 seconds

CHARACTERIZATIONS OF SOME ISOMETRIC IMMERSIONS IN TERMS OF CERTAIN FRENET CURVES

  • Choi, Jin-Ho;Kim, Young-Ho;Tanabe, Hiromasa
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1285-1296
    • /
    • 2010
  • We give criterions for a submanifold to be an extrinsic sphere and to be a totally geodesic submanifold by observing some Frenet curves of order 2 on the submanifold. We also characterize constant isotropic immersions into arbitrary Riemannian manifolds in terms of Frenet curves of proper order 2 on submanifolds. As an application we obtain a characterization of Veronese embeddings of complex projective spaces into complex projective spaces.

RELATIVE ISOPERIMETRIC INEQUALITY FOR MINIMAL SUBMANIFOLDS IN SPACE FORMS

  • Seo, Keomkyo
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.195-200
    • /
    • 2010
  • Let C be a closed convex set in ${\mathbb{S}}^m$ or ${\mathbb{H}}^m$. Assume that ${\Sigma}$ is an n-dimensional compact minimal submanifold outside C such that ${\Sigma}$ is orthogonal to ${\partial}C$ along ${\partial}{\Sigma}{\cap}{\partial}C$ and ${\partial}{\Sigma}$ lies on a geodesic sphere centered at a fixed point $p{\in}{\partial}{\Sigma}{\cap}{\partial}C$ and that r is the distance in ${\mathbb{S}}^m$ or ${\mathbb{H}}^m$ from p. We make use of a modified volume $M_p({\Sigma})$ of ${\Sigma}$ and obtain a sharp relative isoperimetric inequality $$\frac{1}{2}n^n{\omega}_nM_p({\Sigma})^{n-1}{\leq}Vol({\partial}{\Sigma}{\sim}{\partial}C)^n$$, where ${\omega}_n$ is the volume of a unit ball in ${\mathbb{R}}^n$ Equality holds if and only if ${\Sigma}$ is a totally geodesic half ball centered at p.

THE RIGIDITY OF MINIMAL SUBMANIFOLDS IN A LOCALLY SYMMETRIC SPACE

  • Cao, Shunjuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.135-142
    • /
    • 2013
  • In the present paper, we discuss the rigidity phenomenon of closed minimal submanifolds in a locally symmetric Riemannian manifold with pinched sectional curvature. We show that if the sectional curvature of the submanifold is no less than an explicitly given constant, then either the submanifold is totally geodesic, or the ambient space is a sphere and the submanifold is isometric to a product of two spheres or the Veronese surface in $S^4$.

ANOTHER CHARACTERIZATION OF ROUND SPHERES

  • Lee, Seung-Won;Koh, Sung-Eun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.701-706
    • /
    • 1999
  • A characterization of geodesic spheres in the simply connected space forms in terms of the ratio of the Gauss-Kronecker curvature and the (usual) mean curvature is given: An immersion of n dimensional compact oriented manifold without boundary into the n + 1 dimensional Euclidean space, hyperbolic space or open half sphere is a totally umbilicimmersion if the mean curvature $H_1$ does not vanish and the ratio $H_n$/$H_1$ of the Gauss-Kronecker curvature $H_n$ and $H_1$ is constant.

  • PDF

SPHERES IN THE SHILOV BOUNDARIES OF BOUNDED SYMMETRIC DOMAINS

  • Kim, Sung-Yeon
    • The Pure and Applied Mathematics
    • /
    • v.22 no.1
    • /
    • pp.35-56
    • /
    • 2015
  • In this paper, we classify all nonconstant smooth CR maps from a sphere $S_{n,1}{\subset}\mathbb{C}^n$ with n > 3 to the Shilov boundary $S_{p,q}{\subset}\mathbb{C}^{p{\times}q}$ of a bounded symmetric domain of Cartan type I under the condition that p - q < 3n - 4. We show that they are either linear maps up to automorphisms of $S_{n,1}$ and $S_{p,q}$ or D'Angelo maps. This is the first classification of CR maps into the Shilov boundary of bounded symmetric domains other than sphere that includes nonlinear maps.

THE SET OF ZOLL METRICS IS NOT PRESERVED BY SOME GEOMETRIC FLOWS

  • Azami, Shahroud;Fasihi-Ramandi, Ghodratallah
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.855-861
    • /
    • 2019
  • The geodesics on the round 2-sphere $S^2$ are all simple closed curves of equal length. In 1903 Otto Zoll introduced other Riemannian surfaces with the same property. After that, his name is attached to the Riemannian manifolds whose geodesics are all simple closed curves of the same length. The question that "whether or not the set of Zoll metrics on 2-sphere $S^2$ is connected?" is still an outstanding open problem in the theory of Zoll manifolds. In the present paper, continuing the work of D. Jane for the case of the Ricci flow, we show that a naive application of some famous geometric flows does not work to answer this problem. In fact, we identify an attribute of Zoll manifolds and prove that along the geometric flows this quantity no longer reflects a Zoll metric. At the end, we will establish an alternative proof of this fact.

HYPERSURFACES IN THE UNIT SPHERE WITH SOME CURVATURE CONDITIONS

  • Park, Joon-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.641-648
    • /
    • 1994
  • Let M be a minimally immersed closed hypersurface in $S^{n+1}$, II the second fundamental form and $S = \Vert II \Vert^2$. It is well known that if $0 \leq S \leq n$, then $S \equiv 0$ or $S \equiv n$ and totally geodesic hypersheres and Clifford tori are the only possible minimal hypersurfaces with $S \equiv 0$ or $S \equiv n$ ([6], [2]). From these results, Chern suggested some questions on the study of compact minimal hypersurfaces on the sphere with S =constant: what are the next possible values of S to n, and does in the ambient sphere\ulcorner By the way, S is defined extrinsically but, in fact, it is an intrinsic invariant for the minimal hypersurface, i.e., S = n(n-1) - R, where R is the scalar, curvature of M. Some partial answers have been obtained for dim M = 3: Assuming $M^3 \subset S^4$ is closed and minimal with S =constant, de Almeida and Brito [1] proved that if $R \geq 0$ (or equivalently $S \leq 6$), then S = 0, 3 or 6, Peng and Terng ([5]) proved that if M has 3 distint principal curvatures, then S = 6, and in [3] Chang showed that if there exists a point which has two distinct principal curvatures, then S = 3. Hence the problem for dim M = 3 is completely done. For higher dimensional cases, not much has been known and these problems seem to be very hard without imposing some more conditions on M.

  • PDF

DEFORMING PINCHED HYPERSURFACES OF THE HYPERBOLIC SPACE BY POWERS OF THE MEAN CURVATURE INTO SPHERES

  • Guo, Shunzi;Li, Guanghan;Wu, Chuanxi
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.737-767
    • /
    • 2016
  • This paper concerns closed hypersurfaces of dimension $n{\geq}2$ in the hyperbolic space ${\mathbb{H}}_{\kappa}^{n+1}$ of constant sectional curvature evolving in direction of its normal vector, where the speed equals a power ${\beta}{\geq}1$ of the mean curvature. The main result is that if the initial closed, weakly h-convex hypersurface satisfies that the ratio of the biggest and smallest principal curvature at everywhere is close enough to 1, depending only on n and ${\beta}$, then under the flow this is maintained, there exists a unique, smooth solution of the flow which converges to a single point in ${\mathbb{H}}_{\kappa}^{n+1}$ in a maximal finite time, and when rescaling appropriately, the evolving hypersurfaces exponential convergence to a unit geodesic sphere of ${\mathbb{H}}_{\kappa}^{n+1}$.

The Accuracy Analysis of Methods to solve the Geodetic Inverse Problem (측지 역 문제 해석기법의 정확도 분석)

  • Lee, Yong-Chang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.329-341
    • /
    • 2011
  • The object of this paper is to compare the accuracy and the characteristic of various methods of solving the geodetic inverse problem for the geodesic lines which be in the standard case and special cases(antipodal, near antipodal, equatorial, and near equatorial situation) on the WGS84 reference ellipsoid. For this, the various algorithms (classical and recent solutions) to deal with the geodetic inverse problem are examined, and are programmed in order to evaluate the calculation ability of each method for the precise geodesic determination. The main factors of geodetic inverse problem, the distance and the forward azimuths between two points on the sphere(or ellipsoid) are determined by the 18 kinds of methods for the geodetic inverse solutions. After then, the results from the 17 kinds of methods in the both standard and special cases are compared with those from the Karney method as a reference. When judging these comparison, in case of the standard geodesics whose length do not exceed 100km, all of the methods show the almost same ability to Karney method. Whereas to the geodesics is longer than 4,000km, only two methods (Vincenty and Pittman) show the similar ability to the Karney method. In the cases of special geodesics, all methods except the Modified Vincenty method was not proper to solve the geodetic inverse problem through the comparison with Karney method. Therefore, it is needed to modify and compensate the algorithm of each methods by examining the various behaviors of geodesics on the special regions.