Acknowledgement
Supported by : 인천대학교
References
- Bessel F.W. (1825), 'The calculation of longitude and latitude from geodesic measurements (1825)', Astron. Nachr. 331(8), pp. 852-861(2010); translated by C. F. F. Karney and R. E. Deakin. Preprint :arXiv : 0908.1824. https://doi.org/10.1002/asna.201011352
- Bessel F.W. (1826), 'On the computation of geographical longitude and latitude from geodetic measurements', Astronomical Notes, Volume 4, Number 86, columns pp. 241-254.
- Bomford G. (1980), 'Geodesy', 4th Ed., Oxford University Press, Oxford, U.K.
- Borre Kai(2001), 'Ellipsoidal Geometry and Conformal Mapping', March 2001.
- Bowring B.R. (1981), 'The Direct and Inverse Problems for Short Geodesic Lines on the Ellipsoid', Surveying and Mapping, 41, 2, pp. 135-141.
- Bowring B.R. (1983), 'The Geodesic Inverse Problem', Bull. Geod. 57, pp. 109-120. https://doi.org/10.1007/BF02520917
- Bowring B.R. (1996), 'Total inverse solutions of the geodesic and great elliptic', Survey Review, 33 (261), pp. 461-476. https://doi.org/10.1179/003962696791484970
- Deakin R.E. and Hunter M.N. (2007), 'Geodesics on an ellipsoid - Pittman's Method'. Presented at the Spatial Sciences Institute Biennial International Conference.
- Fichot M. and Gerson M. (1937), 'La Zone Geodesique Antipode, in Annales Hydrographiques, 3' sene', Tome Quinzieme, Service Hydrographique De Le Marine, Paris.
- Gupta R.M. (1972), 'A Comparative Study of Various direct and Inverse Foemulae for Lines up to 800km in Ellipsoidal Geodesy', M.S. thesis, The Ohio State University.
- Helmert F.R. (1964), 'Mathematical and Physical Theories of Higher Geodesy', Part 1, Aeronautical Chart and Information Center (St. Louis), Chaps. pp. 5-7.
- Hooijberg Maarten (1997), 'Practical Geodesy using computers', Sringer verlag Berlin Heidelberg.
- Jank W. and Kivioja L.A. (1980), 'Solution of the direct and inverse problems on reference ellipsoids by point-by-point integration using programmable pocket calculators', Surveying and Mapping, XL(3), pp. 325-337.
- Jekeli Christopher (2006), 'Geometric Reference Systems in Geodesy', OSU.
- Karney Charles F. F. (2010), 'GeographicLib, version 1.7', http://geographiclib.sf.net.
- Karney Charles F. F. (2011), 'Geodesics on an ellipsoid of revolution', arXiv:1102.1215v1, [physics.geo-ph].
- Kivioja L.A. (1971), 'Computation of geodetic direct and indirect problems by computers accumulating increments from geodetic line elements.', Bull.Geod., 99, pp. 55-63. https://doi.org/10.1007/BF02521679
- Krakiwsky E.J. and Thomson D.B. (1974), 'Geodetic position computations', Lecture notes, No.39, Dept. of Surveying and Engineering, Univ. of New Brunswick, Fredericton.
- Lambert W.D. (1942), 'The distance between two widely separated points on the surface of the earth', Journal of the Washington Academy of Sciences, Vol. 32, No. 5, pp. 125-130.
- Lewis E.A. (1963), 'Parametric Formulas for Geodesic Curves and Distances on a Slightly Oblate Earth', Air Force Cambridge Research Laboratories, Note No. 63-485, AD412501.
- Maxima (2009)', A computer algebra system', version 5.20.1.
- Pittman, M.E.(1986), 'Precision direct and inverse solutions of the geodesic', Surveying and Mapping, Vol.46, No.1, pp. 47-54.
- Rainsford H.F. (1955), 'Long geodesics on Ellipsoid', Bull. Geod., No.37, pp. 12-22.
- Rapp R.H. (1991), 'Geometric geodesy Part I', The Ohio State Univ. Rapp R.H. (1993), 'Geometric Geodesy Part II', OSU.
- Robbins A.R. (1962), 'Long lines on the spheroid.', Surv. Rev., XVI(125), pp. 301-309. https://doi.org/10.1179/003962662792002619
- Saito T. (1970), 'The computation of long geodesics on the ellipsoid by non-series expanding procedure', Bulletin Geodesique, No. 98, pp. 341-374.
- Saito T. (1979), 'The computation of long geodesics on the ellipsoid through Gaussian quadrature', Bulletin Geodesique, Vol. 53, No. 2, pp. 165-177. https://doi.org/10.1007/BF02521087
- Sjoberg Lars E. (2006), 'New solutions to the direct and indirect geodetic problems on the ellipsoid', zfv, 2006(1):36 pp. 1-5.
- Sodano E.M. (1965), 'General non-iterative solution of the inverse and direct geodetic problem', Bull. Geod., No. 75.
- Thien G. (1967), 'A Solution to the Inverse Problem for Nearly-Antipodal Points on the Equator of the Ellipsoid of Revolution', M.S. thesis, The Ohio State University.
- Thomas C.M. and Featherstone W.E. (2005), 'Validation of Vincenty's Formulas for the Geodesic Using a New Fourth-Order Extension of Kivioja's Formula', Journal of Surveying Engineering, ASCE, pp. 20-26.
- Vermeille H. (2002), 'Direct transformation from geocentric coordinates to geodetic coordinates', J. Geod., 76(9), pp. 451-454. https://doi.org/10.1007/s00190-002-0273-6
- Vincenty T. (1975a), 'Direct and Inverse Solutions of Geodesics on the Ellipsoid with Application of Nested Equations', Survey Review XXII, 176, pp. 88-93.
- Vincenty T. (1975b), 'Geodetic inverse solution between antipodal points', unpublished report, pp. 1-12.
Cited by
- 정지위성 방위각 정보를 활용한 전자 컴퍼스 편차 자동보정기법 연구 vol.41, pp.4, 2011, https://doi.org/10.5394/kinpr.2017.41.4.189