• Title/Summary/Keyword: Karney 기법

Search Result 3, Processing Time 0.015 seconds

The Accuracy Analysis of Methods to solve the Geodetic Inverse Problem (측지 역 문제 해석기법의 정확도 분석)

  • Lee, Yong-Chang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.329-341
    • /
    • 2011
  • The object of this paper is to compare the accuracy and the characteristic of various methods of solving the geodetic inverse problem for the geodesic lines which be in the standard case and special cases(antipodal, near antipodal, equatorial, and near equatorial situation) on the WGS84 reference ellipsoid. For this, the various algorithms (classical and recent solutions) to deal with the geodetic inverse problem are examined, and are programmed in order to evaluate the calculation ability of each method for the precise geodesic determination. The main factors of geodetic inverse problem, the distance and the forward azimuths between two points on the sphere(or ellipsoid) are determined by the 18 kinds of methods for the geodetic inverse solutions. After then, the results from the 17 kinds of methods in the both standard and special cases are compared with those from the Karney method as a reference. When judging these comparison, in case of the standard geodesics whose length do not exceed 100km, all of the methods show the almost same ability to Karney method. Whereas to the geodesics is longer than 4,000km, only two methods (Vincenty and Pittman) show the similar ability to the Karney method. In the cases of special geodesics, all methods except the Modified Vincenty method was not proper to solve the geodetic inverse problem through the comparison with Karney method. Therefore, it is needed to modify and compensate the algorithm of each methods by examining the various behaviors of geodesics on the special regions.

Efficient Calculation of External Flow for Transient Simulation in Pipe Networks (상수관망의 수격현상 모의를 위한 외부 유출입 유량의 효율적해석)

  • Park, Jae-Hong;Han, Geon-Yeon
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.427-438
    • /
    • 2001
  • A numerical model to analyze the unsteady flow in water distribution system was developed by using wave adjustment method. When analyzing the unsteady flow in the real water distribution system, the computational procedures are very complex due to the various boundary condition. Wave adjustment method, which can solve the boundary condition more simply and accurately, was introduced to overcome this difficulty and related equations to solve external flow directly were presented. Using these equations, the numerical model was developed to analyze water hammer. The suggested model was applied to a hypothetical distribution system and a real system with 26 pipes with various external flow boundary condition to evaluate the applicability of the developed model. The simulation results by this model agree with those by Karney's analysis in terms of discharge and pressure.

  • PDF

Evaluation of the Applicability of Solution Methods for 3D Conversion from Cartesian to Geodetic Coordinates (3차원 직교좌표의 측지좌표 전환을 위한 해석기법의 적용성 평가)

  • Lee, Yong Chang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.2
    • /
    • pp.173-180
    • /
    • 2014
  • The methods for implementing geocentric to geodetic coordinates conversion could be classified into two, which are respectively the closed-form and the iterative-form solutions. Essential conditions to achieve performances are accuracy, speed of convergence and/or simplicity of it's algorithm. Also, the algorithm must be valid at any of inner and outer points in the Earth, including center of Earth, the equatorial plane and the polar axis that are known as 'special regions'. This research planned for evaluating the feasibility of coordinates conversion in special regions, and comparing the accuracy of conversion solutions by using 10 methods for conversions from geocentric to geodetic coordinates. By comparing performances of statistical tests(with accuracy and solving success in special regions), Vermeille(2011) and Karney(2011) methods brought out more satisfied and finer results than other methods.