ANOTHER CHARACTERIZATION OF ROUND SPHERES

  • Published : 1999.11.01

Abstract

A characterization of geodesic spheres in the simply connected space forms in terms of the ratio of the Gauss-Kronecker curvature and the (usual) mean curvature is given: An immersion of n dimensional compact oriented manifold without boundary into the n + 1 dimensional Euclidean space, hyperbolic space or open half sphere is a totally umbilicimmersion if the mean curvature $H_1$ does not vanish and the ratio $H_n$/$H_1$ of the Gauss-Kronecker curvature $H_n$ and $H_1$ is constant.

Keywords

References

  1. Ann. Math. Pure Appl. v.58 A characteristic property of spheres A. D. Alexandrov
  2. Inequalities E. F. Beckenbach;R. Bellman
  3. Proc. Amer. Math. Soc. v.88 Integral formulas and hyperspheres in a simply connected space form I. Bivens
  4. Math. Scand. v.2 Some integral formulas for closed hypersurfaces C. C. Hseiung
  5. Proc. Amer. Math. Soc. v.126 A characterization of round spheres S-E. Koh
  6. Differential Geometry, Pitman Mono. v.52 Compact hypersurfaces: The Alexandrov theorem for higher order mean curvatures S. Montiel;A. Ros;B. Lawson(ed.)
  7. Indiana Univ. Math. Jour. v.26 Applications of the Hessian operator in a Riemannian manifold R. C. Reilly
  8. Revista Matematica Iberoamericana v.3 Compact hypersurfaces with constant higher order mean curvatures A. Ros
  9. Jour. Diff. Geom. v.27 Compact hypersurfaces with constant scalar curvature and a congruence theorem A. Ros
  10. Arch. Math. v.3 Uber Kennzeichnungen der Kugeln and Affinespharen durch Herrn Grotemeyer W. Suss