• Title/Summary/Keyword: Geo-conservation

Search Result 34, Processing Time 0.02 seconds

The Research on the Management Plan of Geological Heritage in Korea using GIS (지리정보를 활용한 한국의 지질유산 정보화 구축 및 관리방안 제시)

  • Lee, SooJae;Lee, MoungJin
    • Journal of Environmental Policy
    • /
    • v.14 no.4
    • /
    • pp.103-123
    • /
    • 2015
  • To provide effective management policy of geo-heritages, concept of Korean geo-heritage has been organized based on geo-diversity, geo-conservation, geo-tourism, and earth-heritage. In addition, current status of geo-heritage in Korea has been grasped, and categorized. In case GPS (Global Positioning System) coordinates exist, spatial information was constructed as GIS (Geographic Information System). Geo-heritages were classified into a total of six categories of natural monument, scenic site, coastal sand-dune, natural cave, world nature heritage, and other types of geo-heritage. By mapping 991 geo-heritages scattered nationwide using geographical information, all statuses can now be readily identified and enable the analysis of the distribution tendencies and correlation with topography. This study was aimed at searching the political connection based on quantitatively organized and analyzed geo-heritages, which have not been mapped thus far. In addition, this study organized data that have existed only in literature, and presented example verification. Moreover, these can be used as guidelines for the future search, discovery, registration and management of geo-heritage. If additional geo-heritages are discovered in field studies or with satellite images, then more correlations may be identified and help facilitate the research on geo-heritages management plans.

  • PDF

Formulation of Mass Conservation and Linear Momentum Conservation for Saturated Porous Media in Arbitrary Lagrangian Eulerian(ALE) Description (포화된 다공질 매체의 질량 보존과 운동량 보존에 대한 Arbitrary Lagrangian Eulerian(ALE) 정식화)

  • Park, Tae-Hyo;Jung, So-Chan;Kim, Won-Cheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.1
    • /
    • pp.5-10
    • /
    • 2003
  • The solids and the fluids in porous media have a relative velocity to each other. Due to physically and chemically different material properties and their relative velocity, the behavior of saturated porous media is extremely complicated. Thus, in order to describe and clarify the deformation behavior of saturated porous media, constitutive models for deformation of porous media coupling several effects need to be developed in frame of Arbitrary Lagrangian Eulerian(ALE) description. The aim of ALE formulations is to maximize the advantages of Lagrangian and Eulerian elements, and to minimize the disadvantages. Therefore, this method is appropriate for the analysis of porous media which are considered for the behavior of the solids and the fluids. For this reason, mass balance equations for saturated porous media are derived here in ALE description frames. ALE formulations of mass conservation for the solid phase and the fluid phase are expressed. Then, linear momentum balance equation for porous media as multiphase media is expressed.

  • PDF

Assessment of Soil Erosion Loss by Using RUSLE and GIS in the Bagmati Basin of Nepal

  • Bastola, Shiksha;Seong, Yeon Jeong;Lee, Sang Hyup;Shin, Yongchul;Jung, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.5-14
    • /
    • 2019
  • This study attempted to study the soil erosion dynamic in the Bagmati Basin of Nepal. In this study, an inclusive methodology that combines Revised Universal Soil Loss Equation (RUSLE) and GIS techniques was adopted to determine the distribution of soil loss in the study basin. As well, this study attempts to study the intensity of soil erosion in the seven different land use patterns in the Bagmati Basin. Soil loss is an associated phenomenon of hydrologic cycle and this dynamic phenomenon possesses threats to sustainability of basin hydrology, agriculture system, hydraulic structures in operation and overall ecosystem in a long run. Soil conservation works, and various planning and design of watersheds works demands quantification of soil loss. The results of the study in Bagmati Basin shows the total annual soil loss in the basin is 22.93 million tons with an average rate of 75.83T/ha/yr. The computed soil loss risk was divided into five classes from tolerable to severe and the spatial pattern was mapped for easy interpretation. Also, evaluation of soil loss in different land use categories shows barren area has highest rate of soil loss followed by agriculture area. This is a preliminary work and provides erosion risk scenario in the basin. The study can be further used for strategic planning of land use and hydrologic conservation works in a basin.

Analysis of Nature Observation Trail in Juwangsan National Park in View of Geo-Tourism (지오투어리즘(Geo-tourism)을 위한 주왕산국립공원의 자연관찰로 분석)

  • JUNG, Pilmo;SEO, Jongcheol;JEON, Young Gweon;SHIN, Yeongkyu
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.2
    • /
    • pp.77-86
    • /
    • 2010
  • Many different Visitor Guide Programs are active in order to explain the park-visitors of the superiority of National Park ecosystems and to make them aware of the importance of national park conservation. One of those VGPs is Nature Observation Trail. In this study, we analyzed the course and program of Sangui Nature Observation Trail in Juwangsan National Park. We suggest new course and interpretation plates to make explorers understand their contents easily.

Practical use of LiDAR data for Environment-friendly Road Design (친환경 도로 설계를 위한 항공레이저측량 데이터의 활용)

  • Lee, Hyun-Jik;Park, Eun-Gwan;Ru, Ji-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.255-262
    • /
    • 2008
  • Value of natural environment and the importance of conservation are augmented gradually, and collision of environment conservation and development are caused in various construction industries. In this study, Presented practical use way to ecological road design using vegetation information and high precision 3-dimensional geo-spatial data for minimizing pollution. Also, analyzed freezing danger of road surface in winter and direct ray of light danger through simulation of completed road and surrounding environment. And presented road design support way through view analysis.

Recent Trends in U.S. Ocean Policy and the Direction of Ocean Environment Conservation Policy (미국 해양정책의 최근 동향과 해양환경 보전정책 방향)

  • KIM, HYUNG SEOP;YIH, WONHO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.4
    • /
    • pp.211-228
    • /
    • 2022
  • Recent trends in U.S. ocean policy were briefly reviewed through the keywords in the documents from the three consecutive administrative offices of U.S. government since 2010. Many keywords was unchanged since 2010 implying that the confirm foundation of US ocean policy is not easily shaken. Among the administration-specific main drivers, emphases on Coastal and Marine Spatial Planning in 2010, Ocean Mapping in 2019, and the 2021 goal of conserving 30% by 2030 may profoundly affect the directions of U.S. ocean environment conservation policy. Decadal trends and implications in main key words of U.S. ocean policy as are reflected from the documents produced by the above three administrative offices were also shown to affect future perspectives of global ocean environment conservation policy as well as the corresponding Korean policies.

A Simple Method for Preserving Underground Water Resources in Volcanic Island (Jeju)

  • Hwang, Junhyuk;Ban, Hoki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.9
    • /
    • pp.29-35
    • /
    • 2016
  • Being mostly made up of highly permeable basalt and volcanic ash soil, Jeju Island's lithosphere characterizes its streams to be dry, flowing only when precipitation is happening. Under this condition, this research was motivated to identify the need of conservation of underground water, which is taking up most of (84% of) Jeju's water usage, and made an attempt to reduce the permeability of stream beds so that it can replace underground water and be used instead. To this end, this study suggested a simple method to make dry streams to carry water all-year-round by reducing permeability of stream floor. The experiment of permeability was performed on the porous basalt and compared it with that of same basalt with volcanic ash soil and Jumunjin sand layer added on top. The results showed a dramatic decrease in permeability of water when both volcanic ash soil and Jumunjin sand is were layered on top of porous basalt. Despite being gained in a controlled environment with a simple test, this result may provide a realistic and effective method of preserving Jeju Island's underground water which ultimately is a method of resolving water related issues.

The Study of Relationship between Berm Width and Debris Flow at the Slope (사면에서 토석류와 소단폭의 관계성에 관한 연구)

  • Kim, Sungduk;Oh, Sewook;Lee, Hojin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.11
    • /
    • pp.5-12
    • /
    • 2013
  • The purpose of this study is to estimate the behavior and the mechanism of debris flow at the end of mountain side when a berm was set on the inclined plane. The numerical model was performed by using the Finite Difference Method(FDM) based on the equation for the mass conservation and momentum conservation. In order to measure the behavior of the debris flow, the debris flow of a straight channel slope and the debris flow of channel slope with 3 types of berms were compared. First, the flow discharge and the sediment volume concentration at the downstream of the channel slope, depending on the various berm width and the different inflow discharges at the upstream of the channel were analyzed. The longer the berm width, the flow discharge at the downstream of the channel was decreased and the high flow fluctuation was reduced by a berm. And it means that a berm can effect for the delay of the debris flow. Through Root Mean Square ratio(RMS) comparison, the flow discharge of the channel slope with a berm was lower than that of a straight channel slope. The longer the berm width, for the sediment volume concentration, an inflection point did not show but mild curve. Because the low sediment concentration with water mixture by a berm continuously flow at the downstream end, it will be effect for reducing the disaster caused by debris flow. The results of this study will provide useful information in predicting and preventing disaster caused by the debris flow.

Numerical Simulation for Behavior of Debris Flow according to the Variances of Slope Angle (비탈면 경사 변화에 따른 토석류 거동의 수치모의)

  • Kim, Sungduk;Yoon, Ilro;Oh, Sewook;Lee, Hojin;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.59-66
    • /
    • 2012
  • The purpose of this study is to estimate the behavior and the mechanism of debris flow on the slope, which has specially various gradient plane. The numerical simulation was performed by using the Finite Differential Element method (FDM) based on the equation for the mass conservation and momentum conservation. The mechanism of flow type for debris flow is divided into three flow types which are stony debris flow, immature debris flow, and turbulent water flow, respectively. First, flow discharge, water flow depth, sediment volume concentration was investigated by variable input of flow discharge at the straight slope angle and two step inclined plane. As the input of flow discharge was decrease, flow discharge and water flow depth was increased, after the first coming debris flow only reached at the downstream. As the input of flow discharge was increased, the curve of flow discharge and flow depth was highly fluctuated. As the results of RMS ratio, the flow discharge and flow depth was lower two step slope angle than the straight slope angle. Second, the behavior of debris flow was investigated by the four cases of gradient degree at the downstream of slope angle. The band width of flow discharge and flow depth for $14^{\circ}$ between $16^{\circ}$ was higher than other gradient degree, and fluctuation curve was continuously high after 10 seconds.

Distribution and Pollution Assessment of Trace Metals in Core Sediments from the Artificial Lake Shihwa, Korea (시화호 코어 퇴적물 내 미량금속 분포 특성 및 오염 평가)

  • Ra, Kongtae;Kim, Eun-Soo;Kim, Joung-Keun;Kim, Kyung-Tae;Lee, Jung-Moo;Kim, Eu-Yeol
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.69-83
    • /
    • 2013
  • Metal concentrations in creek water, sewer outlets and core sediments were analyzed to identify the potential origin of metal pollution and to evaluate the extent of metal pollution and potential toxicity of Lake Shihwa. Mean concentrations for dissolved metals in creek water and sewer outlets were 1.6~136 times higher than those in the surface seawater of Lake Shihwa. Metal concentrations in creek water from an industrial region were also higher than those from municipal and agricultural regions, indicating that the potential source of metal pollution in the study area might be mainly due to industrial activities. The vertical profiles of metals in core sediments showed an increasing trend toward the upper sediments. Extremely higher concentrations of metals were observed in the vicinity of Banweol industrial complex. The results of a geo-accumulation index indicated that Cu, Zn and Cd were highly polluted. By comparing the sediment quality guidelines such as TEL and PEL, six metals such as Cr, Ni, Cu, Zn, Cd and Pb levels in core sediments nearby industrial complex exceeded the PEL value. Mean PEL quotient (mPELQ) was used to integrate the estimate of potential toxicity for measured metals in the present study. Mean PELQs in core sediments from Lake Shihwa ranged from 0.2~2.3, indicating that benthic organisms nearby the industrial complex may have been adversely affected.