학교도서관에서 가장 많은 장서를 차지하는 주제는 문학의 소설이며, 소설장서를 접근하기 위한 KDC의 현행 분류체계는 학교도서관에서 소설에 접근하려는 이용자의 정보요구에 부합하지 않으므로 이용자 요구를 반영한 장르 분류 방안이 모색되어야 한다. 이에 본고에서는 국내·외 국립 및 공공도서관의 소설장서 분류 현황을 조사하고, 온라인 및 오프라인 서점의 소설장서 분류체계와 KDC와 DDC의 소설 분류표를 비교하여 이를 바탕으로 학교도서관에서 소설장서의 장르 분류 방안을 모색하였다. 우선, 소설장서를 위한 장르분류표를 개발하기 위해, 소설을 위한 장르 용어를 수집하고, 이중에서 14개의 장르 표목을 도출하여 영어 표목의 두문자를 분류기호로 할당하였다. 새롭게 개발한 장르분류표의 적용 방안으로 중등학교 도서관의 KDC 번호를 대상으로 KDC와 혼합 적용, 장르기호를 선치해 적용, 장르기호만 적용하는 세 가지를 제시하였다. 본 연구는 KDC에서 계층 분류의 한계를 극복하고 이용자의 요구를 반영한 소설장서의 장르 분류 방안을 모색하였다는데 의의가 있다.
International Journal of Internet, Broadcasting and Communication
/
제16권3호
/
pp.27-32
/
2024
Reliable and fine-grained musical metadata are required for efficient search of rapidly increasing music files. In particular, since the primary motive for listening to music is its emotional effect, diversion, and the memories it awakens, emotion classification along with genre classification of music is crucial. In this paper, as an initial approach towards a "ground-truth" dataset for music emotion and genre classification, we elaborately generated a music corpus through labeling of a large number of ordinary people. In order to verify the suitability of the dataset through the classification results, we extracted features according to MPEG-7 audio standard and applied different machine learning models based on statistics and deep neural network to automatically classify the dataset. By using standard hyperparameter setting, we reached an accuracy of 93% for genre classification and 80% for emotion classification, and believe that our dataset can be used as a meaningful comparative dataset in this research field.
장르기반 분류는 문서를 내용이나 주제가 아닌 문서의 형식 또는 스타일에 의해 분류하는 것을 의미한다. 현재 장르분류 방법은 기존의 주제기반 분류방법에 사용되었던 알고리즘을 그대로 이용하거나 자질선택 방법에 있어서도 효과적이지 못하고 비교적 단순하여 분류 정확률 또한 상대적으로 낮았다. 본 연구에서는 장르기반으로 문서를 자동 분류할 수 있는 새로운 방법론을 제시한다. 장르분류 방법은 크게 두 가지 정보를 이용하여 학습과 분류를 하는데 장르 간 용어의 편차정보와 장르 내에 분포되어 있는 주제 범주 간 용어의 편차정보를 이용한다. 제안된 방법의 성능을 측정하기 위해 인터넷상에서 정제되지 않은 문서를 수집하였으며 이를 대상으로 실험한 결과 기존의 카이제곱 자질선택 방법 및 베이지안 분류 알고리즘과 비교하여 약 30% 정도 우수한 정확도를 나타내었다.
Music genre classification is an essential component for music information retrieval system. There are two important components to be considered for better genre classification, which are audio feature extraction and classifier. This paper incorporates two different kinds of features for genre classification, timbral texture and rhythmic content features. Timbral texture contains several spectral and Mel-frequency Cepstral Coefficient (MFCC) features. Before choosing a timbral feature we explore which feature contributes less significant role on genre discrimination. This facilitates the reduction of feature dimension. For the timbral features up to the 4-th order central moments and the covariance components of mutual features are considered to improve the overall classification result. For the rhythmic content the features extracted from beat histogram are selected. In the paper Extreme Learning Machine (ELM) with bagging is used as classifier for classifying the genres. Based on the proposed feature sets and classifier, experiment is performed with well-known datasets: GTZAN databases with ten different music genres, respectively. The proposed method acquires the better classification accuracy than the existing approaches.
본 논문에서는 새로운 형태의 스펙트럼 특징인 스펙트럼 대비 MFCC (SCMFCC)를 제안하고 음악 장르 분류 성능을 분석하였다. 음악 장르 분류를 위해서는 장르 간의 차이를 두드러지게 할 수 있는 특징을 사용해야 하므로, 음악의 화음 구조 및 강약을 잘 표현하는 스펙트럼 대비 특징들이 관심을 받아왔다. 본 논문에서 제안된 SCMFCC는 멜 켑스트럼 상에서 스펙트럼의 대비를 이용하여 기존의 MFCC를 음악 분류에 적합하도록 변형했다. 널리 사용되고 있는 음악 장르 데이터베이스에서 실험을 수행하여, 제안된 SCMFCC 특징의 음악 장르 분류 성능을 기존의 다른 특징들과 비교하였다.
도서관 분류작업의 의미와 실효성에 대한 의문이 제기되면서, 도서관계에서는 이용자 중심적 분류 또는 독자의 관심을 바탕으로 하는 분류에 대한 관심이 크게 증가하고 있다. 북미 공공도서관계에서는 bookstore model이라 불리는 장르 분류의 적용을 통해 업무의 효율은 물론이고 자료에 대한 도서관 이용자들의 접근성을 향상시킴으로써 결과적으로 도서관 이용율과 서비스 만족도의 증대에 기여하고 있다. 이 연구에서는 북미 공공도서관에서의 장르 분류의 적용양상과 그 과정에서 발견되는 특징을 살펴봄으로써 우리 도서관계에서 진행되는 분류업무의 의미와 기본 방향에 대해 진지하게 성찰해 보았다. 연구에 필요한 데이터는 문헌조사와 북미 공공도서관 실무자와의 면담 또는 서신 교환을 통해 수집하였다.
본 논문은 음악신호의 옥타브 밴드 상에서 주파수와 시간 방향의 순서 통계량에 기반한 음악분류기에 대한 연구이다. 음악의 화음 및 강약 구조를 표현하기 위해서 파워스펙트럼의 옥타브 밴드 순서 통계량을 이용하였다. 널리 사용되고 있는 두 음악 데이터셋을 이용한 성능 실험을 통해서, 옥타브 밴드 순서 통계량이 기존의 MFCC 와 옥타브밴드 스펙트럼 고저차 특징에 비해서 두 데이터셋에대해 각각 2.61 %와 8.9 % 장르 분류정확도가 개선되었다. 실험결과는 옥타브 밴드 순서 통계량이 음악 장르 분류에 적합함을 보인다.
Lee Jong Hak;Yoon Won lung;Lee Kang Kyu;Park Kyu Sik
대한전자공학회:학술대회논문집
/
대한전자공학회 2004년도 학술대회지
/
pp.768-771
/
2004
In this paper, we propose a content-based audio genre classification algorithm that automatically classifies the query audio into five genres such as Classic, Hiphop, Jazz, Rock, Speech using digital signal processing approach. From the 20 second query audio file, 54 dimensional feature vectors, including Spectral Centroid, Rolloff, Flux, LPC, MFCC, is extracted from each query audio. For the classification algorithm, k-NN, Gaussian, GMM classifier is used. In order to choose optimum features from the 54 dimension feature vectors, SFS (Sequential Forward Selection) method is applied to draw 10 dimension optimum features and these are used for the genre classification algorithm. From the experimental result, we verify the superior performance of the SFS method that provides near $90{\%}$ success rate for the genre classification which means $10{\%}$-$20{\%}$ improvements over the previous methods
음악 장르는 음악 검색 및 분류 등의 정보 처리 시스템 구현에 있어서 필수적인 요소이다. 일반적으로 장르 분류를 위한 스펙트럼 특징은 음악의 화음 및 강약 구조를 표현하기 위해 부밴드로 분해하여 구해진다. 본 논문은 음악 장르 분류 성능 개선을 위한 특징 추출을 위한 부밴드 분해 방법에 관해 연구하였다. 또한 부밴드 음악 특징의 차수를 줄일 수 있는 방법에 대해서도 연구하였다. 널리 사용되고 있는 장르 데이터셋들에서 실험을 수행하여 널리 사용되고 있는 옥타브 스케일보다 세분화된 부밴드 분해가 장르 분류 성능을 향상시킬 수 있으며, 특징 차수 축소를 결합하여 분류기의 계산량도 줄일 수 있음을 보였다.
본 논문은 자동차 오디오 시스템에 내장된 라디오에서 실시간으로 재생되는 연속적인 오디오 신호로부터 음악 신호를 선별하고, 해당 음악에 대한 실시간 음악장르 분류를 통해 자동으로 이퀄라이저를 조절하는 방식을 제안한다. 제안된 방식에서는 음악분류 정확도를 높이고 실시간 신호처리를 실행하기 위해 연속적인 오디오 신호로부터 추출한 음색 특징 벡터와 리듬 특징 벡터를 GMM (Gaussian mixture model) 분류 방식에 적용하여 음악 분류를 수행한다. 제안된 방식은 카오디오 시스템의 라디오로부터 출력된 오디오 신호로부터 분할된 다양한 오디오 구간을 5가지 음악장르로 분류하여 음악 장르 분류 성능을 측정하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.