References
- N. Ndou, R. Ajoodha and A. Jadhav, "Music Genre Classification: A Review of Deep-Learning and Traditional Machine-Learning Approaches," IEEE Intern. IOT, Electronics and Mechatronics Conf., Toronto, pp. 1-6, 2021
- K. Kosina, "Music genre recognition," Fach-hochschule Hagenberg, Tech. Rep., 2002.
- JS. Gomez-Canon et al. "TROMPA-MER: an open dataset for personalized music emotion recognition." Journal of Intelligent Information System, 60, pp. 549-570, 2023. https://doi.org/10.1007/s10844-022-00746-0
- P. N. Justin, Musical Emotions Explained, Oxford University Press, 2019.
- J. Kim and E. Andre, "Emotion recognition based on physiological changes in listening music," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 30 (12), pp. 2067-2083, December, 2008 https://doi.org/10.1109/TPAMI.2008.26
- K. R. Scherer, "Which emotions can be induced by music? what are the underlying: Mechanisms? and how can we measure them?" Journal of New Music Research, vol. 33, no. 3, pp. 239-251, 2004. https://doi.org/10.1080/0929821042000317822
- Y. Chen, Y. Yang, J. Wang and H. Chen, "The AMG1608 dataset for music emotion recognition." In: ICASSP 2015, South Brisbane, Queensland, Australia, April 19-24, 693-697, 2015
- B. L. Sturm, "A Survey of Evaluation in Music Genre Recognition. Adaptive Multimedia Retrieval, 2012
- M. Genussov and I. Cohen, "Musical genre classification of audio signals using geometric methods. In: EUSIPCO, IEEE, S. 497-501, 2010
- J. Burred and A. Lerch, "A Hierarchical Approach To Automatic Musical Genre Classification." In: in Proc. Of the 6 th Int. Conf. on Digital Audio Effects, S. 8-11, 2003
- S. Brecheisen, H. Kriegel, P. Kunath and A. Pryakhin, "Hierarchical Genre Classification for Large Music Collections." In: Proceedings of the ICME 2006, July 9-12, Toronto, Canada, 1385-1388, 2006
- C. Lee, J. Shin, K. Yu and J. Su, "Automatic Music Genre Classification using Modulation Spectral Contrast Feature." In: Multimedia and Expo, 2007 July, 2007
- T. Li, M. Ogihara and Q. LI, "A Comparative Study on Content-based Music Genre Classification." In: Proceedings of the 26th ACM SIGIR, NY, USA, 2003
- T. Li, A. Chan and A. Chun, "Automatic musical pattern feature extraction using convolutional neural network." In Proc. Int. Conf. Data Mining and Applications. 2010
- T. Lidy and A. Schindler. "Parallel convolutional neural networks for music genre and mood classification", MIREX2016, 2016.
- K. Hevner, "Experimental Studies of the Elements of Expression in Music." XLVII (1936), S. 246-268, 1936
- R. R. Thayer, The Biopsychology of Mood and Arousal. Oxford University Press, USA, 1990
- D. Han, Y. Kong, J. Han et al. A survey of music emotion recognition. Front. Comput. Sci. 16, 166335, 2022
- M. Xu, X. Li, H. Xianyu, J. Tian, F. Meng and W. Chen. Multi-scale Approaches to the MediaEval 2015 "Emotion in Music" Task. MediaEval Workshop, Sept.14-15, 2015
- E. Coutinho, G Trigeorgis, S. Zafeirious and B. Schuller. "Automatically estimation emotion in music with deep long-short term memory recurrent neural networks." In:Proceeding of the MediaEval Workshop, Sept.14-15, 2015
- JAMENDO, www.jamendo.com.
- MUSOPEN, www.musopen.org
- E. Allamanche, J. Herre and O. Hellmuth, "MPEG-7 audio low level descriptors for audio identification," Proposal 6832, ISO/IECJTC1/SC29/ WG11(MPEG), 2001
- D.N. Jiang, L. Lu, H.J. Zhang, J.H. Tao, and L.H. Cai, "Music Type Classification by Spectral Contrast Features." In: Multimedia and Expo, 2002. ICME '02. Proceedings. 2002
- F. Pedregosa et al. "Scikit-learn:Machine learning in python," 2018.
- F. Chollet et al., "Keras," https://github.com/fchollet/keras, 2015.