• Title/Summary/Keyword: Genomic Breeding Value

Search Result 65, Processing Time 0.023 seconds

Comparison of the estimated breeding value and accuracy by imputation reference Beadchip platform and scaling factor of the genomic relationship matrix in Hanwoo cattle

  • Soo Hyun, Lee;Chang Gwon, Dang;Mina, Park;Seung Soo, Lee;Young Chang, Lee;Jae Gu, Lee;Hyuk Kee, Chang;Ho Baek, Yoon;Chung-il, Cho;Sang Hong, Lee;Tae Jeong, Choi
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.431-440
    • /
    • 2022
  • Hanwoo cattle are a unique and historical breed in Korea that have been genetically improved and maintained by the national evaluation and selection system. The aim of this study was to provide information that can help improve the accuracy of the estimated breeding values in Hanwoo cattle by showing the difference between the imputation reference chip platforms of genomic data and the scaling factor of the genetic relationship matrix (GRM). In this study, nine sets of data were compared that consisted of 3 reference platforms each with 3 different scaling factors (-0.5, 0 and 0.5). The evaluation was performed using MTG2.0 with nine different GRMs for the same number of genotyped animals, pedigree, and phenotype data. A five multi-trait model was used for the evaluation in this study which is the same model used in the national evaluation system. Our results show that the Hanwoo custom v1 platform is the best option for all traits, providing a mean accuracy improvement by 0.1 - 0.3%. In the case of the scaling factor, regardless of the imputation chip platform, a setting of -1 resulted in a better accuracy increased by 0.5 to 1.6% compared to the other scaling factors. In conclusion, this study revealed that Hanwoo custom v1 used as the imputation reference chip platform and a scaling factor of -0.5 can improve the accuracy of the estimated breeding value in the Hanwoo population. This information could help to improve the current evaluation system.

Potential Allelic Association of Microsatellite Markers on Bovine Chromosome 5 with Carcass Traits in Hanwoo (Korean cattle) (Microsatellite 의 대립유전자 빈도를 이용한 한우의 경제형질과의 연관성 규명)

  • Oh, Jae-Don;Kong, Hong-Sik;Cho, Byung-Wook;Lee, Mi-Rang;Jeon, Gwang-Joo;Lee, Hak-Kyo
    • Journal of Life Science
    • /
    • v.18 no.9
    • /
    • pp.1225-1229
    • /
    • 2008
  • A total of 10 polymorphic microsatellite markers on bovine chromosome 5 were used for allelic association tests with phenotypic characteristics in Hanwoo. The data analyzed in this study were collected from 326 steers. Chi-square tests were performed to compare the frequencies of individual alleles between the high and the low breeding value groups. The following breeding values were analyzed for QTL effects. The frequency of allele 239 of DIK2828 showed a significant difference between the high and the low breeding value groups in the breeding value of marbling score (MSBV). The allele 279 of BMC1009 was found to show significant differences in allelic distribution for the breeding value of cold carcass weight (CWBV) and the breeding value of backfat thickness (BFBV) and allele 285 showed significant differences in allelic distribution for CWBV, BFBV, and MSBV. The allele 200 of DIK4329 showed significant differences in allelic distributions for the breeding values of longissimus muscle area (LMABV) and BFBV. In this study, we identified the QTL for carcass traits at around 20 (DIK2828), 41 (BMC1009) and 95 (DIK4329) cM in chromosome 5. The results provided a useful reference for further positional candidate gene research and marker-assisted selection for fat metabolism and carcass traits.

Comparison of genomic predictions for carcass and reproduction traits in Berkshire, Duroc and Yorkshire populations in Korea

  • Iqbal, Asif;Choi, Tae-Jeong;Kim, You-Sam;Lee, Yun-Mi;Alam, M. Zahangir;Jung, Jong-Hyun;Choe, Ho-Sung;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1657-1663
    • /
    • 2019
  • Objective: A genome-based best linear unbiased prediction (GBLUP) method was applied to evaluate accuracies of genomic estimated breeding value (GEBV) of carcass and reproductive traits in Berkshire, Duroc and Yorkshire populations in Korean swine breeding farms. Methods: The data comprised a total of 1,870, 696, and 1,723 genotyped pigs belonging to Berkshire, Duroc and Yorkshire breeds, respectively. Reference populations for carcass traits consisted of 888 Berkshire, 466 Duroc, and 1,208 Yorkshire pigs, and those for reproductive traits comprised 210, 154, and 890 dams for the respective breeds. The carcass traits analyzed were backfat thickness (BFT) and carcass weight (CWT), and the reproductive traits were total number born (TNB) and number born alive (NBA). For each trait, GEBV accuracies were evaluated with a GEBV BLUP model and realized GEBVs. Results: The accuracies under the GBLUP model for BFT and CWT ranged from 0.33-0.72 and 0.33-0.63, respectively. For NBA and TNB, the model accuracies ranged 0.32 to 0.54 and 0.39 to 0.56, respectively. The realized accuracy estimates for BFT and CWT ranged 0.30 to 0.46 and 0.09 to 0.27, respectively, and 0.50 to 0.70 and 0.70 to 0.87 for NBA and TNB, respectively. For the carcass traits, the GEBV accuracies under the GBLUP model were higher than the realized GEBV accuracies across the breed populations, while for reproductive traits the realized accuracies were higher than the model based GEBV accuracies. Conclusion: The genomic prediction accuracy increased with reference population size and heritability of the trait. The GEBV accuracies were also influenced by GEBV estimation method, such that careful selection of animals based on the estimated GEBVs is needed. GEBV accuracy will increase with a larger sized reference population, which would be more beneficial for traits with low heritability such as reproductive traits.

The Prediction Ability of Genomic Selection in the Wheat Core Collection

  • Yuna Kang;Changsoo Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.235-235
    • /
    • 2022
  • Genome selection is a promising tool for plant and animal breeding, which uses genome-wide molecular marker data to capture large and small effect quantitative trait loci and predict the genetic value of selection candidates. Genomic selection has been shown previously to have higher prediction accuracies than conventional marker-assisted selection (MAS) for quantitative traits. In this study, the prediction accuracy of 10 agricultural traits in the wheat core group with 567 points was compared. We used a cross-validation approach to train and validate prediction accuracy to evaluate the effects of training population size and training model.As for the prediction accuracy according to the model, the prediction accuracy of 0.4 or more was evaluated except for the SVN model among the 6 models (GBLUP, LASSO, BayseA, RKHS, SVN, RF) used in most all traits. For traits such as days to heading and days to maturity, the prediction accuracy was very high, over 0.8. As for the prediction accuracy according to the training group, the prediction accuracy increased as the number of training groups increased in all traits. It was confirmed that the prediction accuracy was different in the training population according to the genetic composition regardless of the number. All training models were verified through 5-fold cross-validation. To verify the prediction ability of the training population of the wheat core collection, we compared the actual phenotype and genomic estimated breeding value using 35 breeding population. In fact, out of 10 individuals with the fastest days to heading, 5 individuals were selected through genomic selection, and 6 individuals were selected through genomic selection out of the 10 individuals with the slowest days to heading. Therefore, we confirmed the possibility of selecting individuals according to traits with only the genotype for a shorter period of time through genomic selection.

  • PDF

The effectiveness of genomic selection for milk production traits of Holstein dairy cattle

  • Lee, Yun-Mi;Dang, Chang-Gwon;Alam, Mohammad Z.;Kim, You-Sam;Cho, Kwang-Hyeon;Park, Kyung-Do;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.382-389
    • /
    • 2020
  • Objective: This study was conducted to test the efficiency of genomic selection for milk production traits in a Korean Holstein cattle population. Methods: A total of 506,481 milk production records from 293,855 animals (2,090 heads with single nucleotide polymorphism information) were used to estimate breeding value by single step best linear unbiased prediction. Results: The heritability estimates for milk, fat, and protein yields in the first parity were 0.28, 0.26, and 0.23, respectively. As the parity increased, the heritability decreased for all milk production traits. The estimated generation intervals of sire for the production of bulls (LSB) and that for the production of cows (LSC) were 7.9 and 8.1 years, respectively, and the estimated generation intervals of dams for the production of bulls (LDB) and cows (LDC) were 4.9 and 4.2 years, respectively. In the overall data set, the reliability of genomic estimated breeding value (GEBV) increased by 9% on average over that of estimated breeding value (EBV), and increased by 7% in cows with test records, about 4% in bulls with progeny records, and 13% in heifers without test records. The difference in the reliability between GEBV and EBV was especially significant for the data from young bulls, i.e. 17% on average for milk (39% vs 22%), fat (39% vs 22%), and protein (37% vs 22%) yields, respectively. When selected for the milk yield using GEBV, the genetic gain increased about 7.1% over the gain with the EBV in the cows with test records, and by 2.9% in bulls with progeny records, while the genetic gain increased by about 24.2% in heifers without test records and by 35% in young bulls without progeny records. Conclusion: More genetic gains can be expected through the use of GEBV than EBV, and genomic selection was more effective in the selection of young bulls and heifers without test records.

Comparison of genome-wide association and genomic prediction methods for milk production traits in Korean Holstein cattle

  • Lee, SeokHyun;Dang, ChangGwon;Choy, YunHo;Do, ChangHee;Cho, Kwanghyun;Kim, Jongjoo;Kim, Yousam;Lee, Jungjae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.913-921
    • /
    • 2019
  • Objective: The objectives of this study were to compare identified informative regions through two genome-wide association study (GWAS) approaches and determine the accuracy and bias of the direct genomic value (DGV) for milk production traits in Korean Holstein cattle, using two genomic prediction approaches: single-step genomic best linear unbiased prediction (ss-GBLUP) and Bayesian Bayes-B. Methods: Records on production traits such as adjusted 305-day milk (MY305), fat (FY305), and protein (PY305) yields were collected from 265,271 first parity cows. After quality control, 50,765 single-nucleotide polymorphic genotypes were available for analysis. In GWAS for ss-GBLUP (ssGWAS) and Bayes-B (BayesGWAS), the proportion of genetic variance for each 1-Mb genomic window was calculated and used to identify informative genomic regions. Accuracy of the DGV was estimated by a five-fold cross-validation with random clustering. As a measure of accuracy for DGV, we also assessed the correlation between DGV and deregressed-estimated breeding value (DEBV). The bias of DGV for each method was obtained by determining regression coefficients. Results: A total of nine and five significant windows (1 Mb) were identified for MY305 using ssGWAS and BayesGWAS, respectively. Using ssGWAS and BayesGWAS, we also detected multiple significant regions for FY305 (12 and 7) and PY305 (14 and 2), respectively. Both single-step DGV and Bayes DGV also showed somewhat moderate accuracy ranges for MY305 (0.32 to 0.34), FY305 (0.37 to 0.39), and PY305 (0.35 to 0.36) traits, respectively. The mean biases of DGVs determined using the single-step and Bayesian methods were $1.50{\pm}0.21$ and $1.18{\pm}0.26$ for MY305, $1.75{\pm}0.33$ and $1.14{\pm}0.20$ for FY305, and $1.59{\pm}0.20$ and $1.14{\pm}0.15$ for PY305, respectively. Conclusion: From the bias perspective, we believe that genomic selection based on the application of Bayesian approaches would be more suitable than application of ss-GBLUP in Korean Holstein populations.

Implementation of genomic selection in Hanwoo breeding program (유전체정보활용 한우개량효율 증진)

  • Lee, Seung Hwan;Cho, Yong Min;Lee, Jun Heon;Oh, Seong Jong
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.397-406
    • /
    • 2015
  • Quantitative traits are mostly controlled by a large number of genes. Some of these genes tend to have a large effect on quantitative traits in cattle and are known as major genes primarily located at quantitative trait loci (QTL). The genetic merit of animals can be estimated by genomic selection, which uses genome-wide SNP panels and statistical methods that capture the effects of large numbers of SNPs simultaneously. In practice, the accuracy of genomic predictions will depend on the size and structure of reference and training population, the effective population size, the density of marker and the genetic architecture of the traits such as number of loci affecting the traits and distribution of their effects. In this review, we focus on the structure of Hanwoo reference and training population in terms of accuracy of genomic prediction and we then discuss of genetic architecture of intramuscular fat(IMF) and marbling score(MS) to estimate genomic breeding value in real small size of reference population.

National genomic evaluation of Korean thoroughbreds through indirect racing phenotype

  • Lee, Jinwoo;Shin, Donghyun;Kim, Heebal
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.659-669
    • /
    • 2022
  • Objective: Thoroughbred horses have been bred exclusively for racing in England for a long time. Additionally, because horse racing is a global sport, a healthy leisure activity for ordinary citizens, and a high-value business, systematic racehorse breeding at the population level is a requirement for continuous industrial development. Therefore, we established genomic evaluation system (using prize money as horse racing traits) to produce spirited, agile, and strong racing horse population Methods: We used phenotypic data from 25,061 Thoroughbred horses (all registered individuals in Korea) that competed in races between 1994 and 2019 at the Korea Racing Authority and constructed pedigree structures. We quantified the improvement in racehorse breeding output by year in Korea, and this aided in the establishment of a high-level horse-fill industry. Results: We found that pedigree-based best linear unbiased prediction method improved the racing performance of the Thoroughbred population with high accuracy, making it possible to construct an excellent Thoroughbred racehorse population in Korea. Conclusion: This study could be used to develop an efficient breeding program at the population level for Korean Thoroughbred racehorse populations as well as others.

Genome-association analysis of Korean Holstein milk traits using genomic estimated breeding value

  • Shin, Donghyun;Lee, Chul;Park, Kyoung-Do;Kim, Heebal;Cho, Kwang-hyeon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.309-319
    • /
    • 2017
  • Objective: Holsteins are known as the world's highest-milk producing dairy cattle. The purpose of this study was to identify genetic regions strongly associated with milk traits (milk production, fat, and protein) using Korean Holstein data. Methods: This study was performed using single nucleotide polymorphism (SNP) chip data (Illumina BovineSNP50 Beadchip) of 911 Korean Holstein individuals. We inferred each genomic estimated breeding values based on best linear unbiased prediction (BLUP) and ridge regression using BLUPF90 and R. We then performed a genome-wide association study and identified genetic regions related to milk traits. Results: We identified 9, 6, and 17 significant genetic regions related to milk production, fat and protein, respectively. These genes are newly reported in the genetic association with milk traits of Holstein. Conclusion: This study complements a recent Holstein genome-wide association studies that identified other SNPs and genes as the most significant variants. These results will help to expand the knowledge of the polygenic nature of milk production in Holsteins.

Evaluation of accuracies of genomic predictions for body conformation traits in Korean Holstein

  • Md Azizul Haque;Mohammad Zahangir Alam;Asif Iqbal;Yun Mi Lee;Chang Gwon Dang;Jong Joo Kim
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.555-566
    • /
    • 2024
  • Objective: This study aimed to assess the genetic parameters and accuracy of genomic predictions for twenty-four linear body conformation traits and overall conformation scores in Korean Holstein dairy cows. Methods: A dataset of 2,206 Korean Holsteins was collected, and genotyping was performed using the Illumina Bovine 50K single nucleotide polymorphism (SNP) chip. The traits investigated included body traits (stature, height at front end, chest width, body depth, angularity, body condition score, and locomotion), rump traits (rump angle, rump width, and loin strength), feet and leg traits (rear leg set, rear leg rear view, foot angle, heel depth, and bone quality), udder traits (udder depth, udder texture, udder support, fore udder attachment, front teat placement, front teat length, rear udder height, rear udder width, and rear teat placement), and overall conformation score. Accuracy of genomic predictions was assessed using the single-trait animal model genomic best linear unbiased prediction method implemented in the ASReml-SA v4.2 software. Results: Heritability estimates ranged from 0.10 to 0.50 for body traits, 0.21 to 0.35 for rump traits, 0.13 to 0.29 for feet and leg traits, and 0.05 to 0.46 for udder traits. Rump traits exhibited the highest average heritability (0.29), while feet and leg traits had the lowest estimates (0.21). Accuracy of genomic predictions varied among the twenty-four linear body conformation traits, ranging from 0.26 to 0.49. The heritability and prediction accuracy of genomic estimated breeding value (GEBV) for the overall conformation score were 0.45 and 0.46, respectively. The GEBVs for body conformation traits in Korean Holstein cows had low accuracy, falling below the 50% threshold. Conclusion: The limited response to selection for body conformation traits in Korean Holsteins may be attributed to both the low heritability of these traits and the lower accuracy estimates for GEBVs. Further research is needed to enhance the accuracy of GEBVs and improve the selection response for these traits.