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Genome-association analysis of Korean Holstein milk traits using 
genomic estimated breeding value

Donghyun Shin1, Chul Lee2, Kyoung-Do Park3, Heebal Kim1,2, and Kwang-hyeon Cho4,*

Objective: Holsteins are known as the world's highest-milk producing dairy cattle. The purpose 
of this study was to identify genetic regions strongly associated with milk traits (milk production, 
fat, and protein) using Korean Holstein data.
Methods: This study was performed using single nucleotide polymorphism (SNP) chip data 
(Illumina BovineSNP50 Beadchip) of 911 Korean Holstein individuals. We inferred each genomic 
estimated breeding values based on best linear unbiased prediction (BLUP) and ridge regression 
using BLUPF90 and R. We then performed a genome-wide association study and identified 
genetic regions related to milk traits. 
Results: We identified 9, 6, and 17 significant genetic regions related to milk production, fat 
and protein, respectively. These genes are newly reported in the genetic association with milk 
traits of Holstein. 
Conclusion: This study complements a recent Holstein genome-wide association studies 
that identified other SNPs and genes as the most significant variants. These results will help 
to expand the knowledge of the polygenic nature of milk production in Holsteins.

Keywords: Korean Holstein; Genome-wide Association Studies (GWAS); Milk Production; 
Milk Fat; Milk Protein

INTRODUCTION

Holsteins are the world's highest-milk producing dairy cattle. Approximately 2,000 years ago, 
the black Batavians and white Friesians cows were bred to produce better breed. These cattle 
have been continuously selected and genetically evolved into the efficient, high producing black-
and-white dairy cattle, which we know as Holstein-Friesian. For the last several decades, intensive 
application of traditional animal breeding technologies has significantly improved milk perfor-
mance throughout the world.
  Technology of molecular biology has opened up the possibility of identifying genome regions 
and variants underlying complex traits such as milk production, fat and protein. Unlike the 
traditional animal breeding programs which rely on phenotype and pedigree information, genetic 
evaluated information provide a great potential to enhance selection accuracies and expedite 
the genetic improvement of animal productivity. Since the seminal work on quantitative trait 
locus (QTL) mapping by Georges et al [1], a large number of articles including detection of 
QTLs for milk production traits have been published. So far, approximate 1,345 QTLs for milk 
production traits had been reported via genome scans based on marker-QTL linkage analyses. 
The limitations of QTL mapping using linkage analysis and/or linkage disequilibrium (LD) 
based on the panels of low to moderate density markers have been well documented [2].
  The advent of genome-wide panels including hundreds of thousands of single nucleotide 
polymorphisms (SNPs) has resulted in the development of commercial SNP chips and rapid, 
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large-scale genotyping of common SNPs across large popula-
tions. These SNPs have been widely used for the detection and 
localization of QTL for complex traits in many species [3], and 
have proved powerful and useful in identification of casual muta-
tions associated with economically important traits in livestock 
[4,5] as well as human diseases. At the same time, genome-wide 
association studies (GWAS) based on high throughput SNP 
genotyping technologies open a broad avenue for exploring 
genes associated with milk production traits in dairy cattle [6]. 
Most recently, along with maturing of genome sequencing and 
high throughput SNP genotyping technologies, GWAS is becom-
ing practical for exploring genes associated with complex traits. 
Like this, GWAS has been widely accepted as a primary approach 
for gene finding, and it achieved huge success in identifying genes 
conferring modest disease risks in human.
  Several studies focusing on identifying genes for milk produc-
tion traits had been performed. Associations between milk traits 
and polymorphisms in candidate genes have produced a long 
list of potential markers with significant effects reported in re-
gional Holstein cattle population [7]. Generally, most of the 
economic traits in dairy cattle are controlled by polymorphisms, 
genes of small or large effects. To find genetic variant related to 
milk production traits beyond previous studies, we performed 
GWAS with genomic estimated breeding values (gEBVs) using 
1,941 Korean Holsteins data. Estimated breeding value (EBV) 
was used as the phenotype as it only considers the genetic compo-
nent of phenotypic variance. We then used p-value integration 
method to detect significant genetic regions with reduction of 
false positive error. Using this approach, we identified 9, 6, and 
17 significant genetic regions associated with milk production, 
fat and protein, respectively and most of these genetic regions 
were not reported, previously. The identified genetic regions and 
their genes could be considered as a preliminary foundation for 
further studies in Holstein milk production traits. Furthermore, 
the identified genetic regions may be used as potential candidate 
markers for selection in Korean dairy cattle breeding programs 
and provide unprecedented insight into the structure of Holstein 
cattle populations.

MATERIALS AND METHODS

Animals and data
We used pedigree data containing 1,941 individuals (from present 
to 3 generations ago) in Korean Holstein population to infer EBV. 
There were milk traits record data (milk production, milk fat, 
milk protein) of 1,169 individuals of total 1,941. We took 911 
individuals samples to perform SNP chip analysis and 488 in-
dividuals of 911 were overlapped with individuals of pedigree 
data. DNA was extracted from nasal discharge samples or semen 
of 911 Holstein individuals. DNA was quantified and genotyped 
using the Illumina BovineSNP50 BeadChip containing 54,609 
SNPs. Features of the Illumina BovineSNP50 BeadChip have 

been detailed previously. All samples were genotyped using 
BEADSTUDIO (Illumina lnc, San Diego, CA, USA).

Genotype quality control and imputation
The chip includes 54,609 SNPs that are distributed on the 29 
bovine autosomes, X and Y chromosomes with an average den-
sity of one SNP per approximately 49 kb) from the cow genome, 
UMD 3.1. We used three criteria to perform quality control to 
reduce false positive results. So, we excluded SNPs with Hardy–
Weinberg equilibrium test p-value of <0.001, a missing rate of 
>0.05 and minor allele frequency of <0.01. Additionally, because 
we used cows and bulls in association analysis, SNPs on the X 
and Y chromosome were also excluded retaining finally 41,099 
autosomal SNPs. The remaining 41,099 SNPs were distributed 
evenly on the autosomes (Supplementary Figure 1). These quality 
control processes were performed using the software PLINK 
[8]. The 41,099 autosomal SNP data of Holsteins after quality 
control was imputed without panels using BEAGLE [9].

Inferring estimated breeding value of milk traits
We inferred EBVs of parity 1 records of three milk traits (milk 
production, milk fat, milk protein), respectively. To improve the 
accuracy of the EBV, we consolidated the number of environ-
mental factors by reducing the factors deemed unnecessary. 
Considering size of pedigree data and phenotype records data, 
we used season and year in inferring EBVs. A single-trait animal 
model was used to estimate the genetic parameters as EBVs. The 
animal model used in this study was as followed:

  y = Xb+Za+e

  Where, y (n×1) was the vector of each milk traits, X (n×p) 
was the matrix of fixed effects (season and year in this study), 
Z (n×n) was the matrix of random effects (relationship matrix 
in this study), b and a were coefficients vector for X and Z, re-
spectively and e (n×1) is the vector of residual error (meaning 
inexplicable factors). EBV is the coefficients vector of Z matrix. 
All parameters were estimated using the BLUPF90 program. 
We used parity 1 records of 1,941 individual in Korean Holstein 
population in this process and inferred EBVs of 1,941 individuals 
per each milk traits between 1990 and 2014. The fixed effects 
in this analysis were year and season (12 to 2: winter, 3 to 5: 
spring, 6 to 8: summer, 9 to 11: fall).
  After inferring EBVs, we inferred gEBVs of 911 individuals 
which used to perform SNP analysis (milk production, milk fat 
and milk protein respectively). First, we estimated SNP effect 
of each trait using 488 individuals. The model of estimation SNP 
effect was as followed.

  y = Za+e

  Where, y (n×1) was the vector of each milk traits EBVs, Z (n×p) 
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was the matrix of SNP genotypes and e is the vector of the i.i.d. 
residual random error with e ~ N(0, Iσe

2), where σe
2 denotes a 

constant variance. a in this model is the coefficients vector for 
Z and marker effects of milk traits, simultaneously. We applied 
ridge regression to solve this model and we assigned ridge pa-
rameter (based on heritability of previous Korean Holstein 
population) to each model of milk traits (ridge parameter λ = 
σe

2/σu
2) [10].
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  All calculations in estimating gEBV were performed using R 
(“MASS” packages).

Genome-wide association analysis
We performed single association analysis using PLINK, as follows:

  y = xb+e

  Where, y is a vector of each gEBVs of 911 genotyped indi-
viduals, x is each SNP information and b is coefficient value for 
x vector. After SNP association test, we used genomic control 
p-value instead of normal p-value. And we assigned integrated 
p-value to non-overlapped regions containing 5 SNPs to identify 
a significant genetic region instead of SNP. We performed p-value 
integration using R (“MADAM” packages). Genome-wide signifi-
cance was defined based on genomic control p-value integration 
of 5 SNPs and Bonferroni method to correct p-value thresholds 
of significance after p-value integration: significant association 
of 0.05 false positives was used as a genome-wide significance. 
An overview of the results of test using Manhattan plots was 
produced by R. Because the SNPs were mapped on the UMD3.1 
assembly, we used UMD3.1 gene information in Ensemble 
Genome Browser to investigate function of significant genetic 
region. We searched Ensemble gene ID and gene symbol which 
was overlapped with each regions. And then we assigned gene 
information to each regions. In this way, we identified relationship 
between each regions and animal trait through cow data of 
Animal QTL database.

RESULTS

Phenotypes used in this study were three traits related to milk 
of 1,169 Korean Holstein individuals (milk production, fat and 
protein) of parity 1. Milk production records were in range 3,473 
kg to 13,734 kg. Mean and standard deviation were 8,730.68 kg 
and 1,481.864 kg, respectively. Milk fat records were in range 
135 kg to 532 kg. Mean and standard deviation were 329.62 kg 
and 59.95 kg. In case of milk protein, records were in range 113 
kg to 428 kg. Mean and standard deviation were 275.42 kg and 
45.38 kg, respectively. All traits followed approximately normal 
distribution and their distributions are shown in Supplementary 
Figure 2. And all pairwise correlation of three traits were higher 
than 0.69 (milk production-fat: 0.69, milk production-protein: 
0.925, milk fat-protein: 0.726) and their plots are shown in Supple-
mentary Figure 3.
  After quality control and imputation of 911 Korean Holstein 
individuals, we estimated gEBVs by two-step method. In first 
step, we estimated EBVs of each parity 1 milk traits using a single-
trait animal model. We considered two fixed effect (season and 
year) in estimation EBVs and their relationships between traits 
and fixed effect are shown in Supplementary Figure 4 (season) 
and Supplementary Figure 5 (year). Through these relationship 
figures, we could identify that effect of year was more than season. 
We show EBVs distribution of each milk trait in Supplementary 
Figure 6. After estimation EBVs of 1,169 individuals (containing 
488 SNP genotyped samples), we estimated the 41,099 SNP effect 
of each milk traits using 438 (training set of 10 fold cross valida-
tion strategy) of 488 individuals through ridge regression. SNP 
effect of each milk trait followed normal distribution and is 
shown in Supplementary Figure 7. We could estimate gEBVs 
through combining SNP genotyped information and estimated 
SNP effect. To test gEBVs accuracy, we compared EBVs with 
gEBVs using 49 individuals (test set of 10 fold cross validation 
strategy). The correlation coefficient of EBVs and gEBVs of each 
milk traits (milk production, fat and protein) of 49 individuals 
were 0.58, 0.70, and 0.68, respectively. Their correlation plots 
are shown in Supplementary Figure 8. In this way, we could 
estimate gEBVs of each three milk traits of 911 genotyped in-
dividuals and their distribution is shown in Supplementary 
Figure 9.
  We compared the genotypes of 911 individuals with EBV as 
a phenotype, respectively. After performing single association 
analysis to these comparison, we identified that p-values from 
this analysis were the results of overestimation through an infla-
tion factor much more than 1. The inflation factor of milk prod-
uction, fat and protein were 2.19, 2.29, and 2.35, respectively. 
This was much higher than 1 and meant that using these p-values 
to identify significant genetic variants was not appropriate. This 
phenomenon is common in animal GWAS, because domesticated 
animals as Holsteins contain a massively structured population 
from small number of bulls and high linkage disequilibrium. 
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To reduce false positive errors, we applied two methods to detect-
ing significant genetic variants. One was that we used genomic 
control p-values instead of normal p-values. These genomic 
control p-values of each milk trait were calculated in PLINK. 
We identified that there were no inflation in genomic control 
p-values of all milk traits through Quantile-Quantile plots (shown 
in Supplementary Figure 10). Additionally, the inflation factor 
of milk production, fat and protein were 1.003471, 1.013479, and 
1.011284, respectively. But none of the 41,099 SNPs exceeded 
the threshold of Bonferroni multiple test based on genomic 
control p-values in milk association test (genomic p-value< 
1.21E-06, equivalent to p-value = 0.05 after Bonferroni multiple 
correction). Milk fat and protein association test results were 
same to Milk production (Supplementary Figure 11). And then 
we integrated genomic control p-values of five SNPs into one 
p-value through Fisher’s Method for combining p-values [11] 
and assigned a p-value to each region. We identified significant 
genetic regions which exceeded the threshold of Bonferroni 
multiple test based on integrated p-values (integrated p-values< 
6.09E-06, equivalent to p-value = 0.05 after Bonferroni multiple 
correction). The results of region estimation in this GWAS study 
after chromosome sorting are in the Manhattan plots in Figure 
1.
  In association test of milk production, nine regions (contain-
ing forty five SNPs) were significant and were distributed into 
six chromosomes (Table 1). Seven of nine regions had overlapped 
sixteen Ensemble genes ID and fourteen of sixteen Ensemble 
genes were related to the protein coding genes. All of the cow 
QTLs were related to nine significant regions in the association 
test of milk production. In association test of milk fat, six regions 
(containing thirty SNPs) were significant and were distributed 
into three chromosomes (Table 2). Four of six regions had over-
lapped thirteen Ensemble genes ID and twelve of thirteen 
Ensemble genes were related to 11 protein coding genes. Ten 
cow QTL were related to two of six significant regions in the 
association test of milk fat. Additionally, six of ten QTL were 
Holstein breed specific. In association test of milk protein, 
seventeen regions (containing eighty five SNPs) were significant 
and were distributed into ten chromosomes (Supplementary 
Table 1). Fifteen of seventeen regions had overlapped sixty 
two Ensemble genes ID and fifty seven of sixty two Ensemble 
genes were related to the protein coding genes. Twenty three 
cow QTLs were related to six of seventeen significant regions 
in the association test of milk fat. Additionally, seven of twenty 
three QTLs were Holstein breed specific. Diacylglycerol O-
Acyltransferase 1 (DGAT1) was known as a major gene for milk 
traits in cow. DGAT1 is located in 1,795,351 bp to 1,804,562 bp 
of chromosome 14. Flanking markers of DGAT1 gene were ARS-
BFGL-NGS-94706 (CHR14:1696470) and Hapmap52798-
ss46526455 (CHR14: 1923292). Normal p-values of ARS-BFGL-
NGS-94706 and Hapmap52798-ss46526455 were 0.04434 and 
0.7297, respectively and did not passed criteria of Bonferroni 

multiple test. After p-value integration, the nearest genetic re-
gion of DGAT1 was located in 1,463,676 bp to 1,696,470 bp of 
chromosome 14. That region of which p-value was 0.136 and 
did not passed criteria of Bonferroni multiple test.
  After three association test, we compared each result with 
other results. The most interesting comparison result was that 
CHR2:80605588-81002535 was significant in all three association 
tests. In this region, there were 4 Ensemble genes and three were 
protein coding genes (TMEFF2, transmembrane protein with 
EGF-like and two follistatin-like domains 2; NABP1, nucleic acid 
binding protein 1; and SDPR, serum deprivation response). 
There were two significant regions in both milk production and 
milk fat. Seven regions were significant in both milk production 
and milk protein. And we found two significant overlapped 
regions in between milk fat and milk protein.

DISCUSSION

To identify genetic regions underlying milk traits of Korean 
Holstein, we performed GWAS with p-value integration in this 
study. These results were based on 911 genotyped Holsteins in 
Korea. Before the association study, we estimated 1,941 Korean 
Holsteins EBVs and we inferred 41,099 SNP effects of each 
milk traits. Using these SNP effects, we estimated gEBVs of 911 
genotyped Holsteins. EBVs contains only the genetic effect of 
phenotype and we could predict genetic capacity of each in-
dividual based on the record of those individuals and their 
relatives. EBV was used to rank breeding stock for selection in 
animal breeding and we decided that EBV were appropriate 
dependent variables in this study. In gEBV estimation, we as-
sumed that heritability of the three milk traits (milk production, 
milk fat, and milk proteins) were 0.23, 0.20, and 0.19, respectively. 
These heritabilities were reported in a previous study using 
Korean Holstein population [12].
  We decided that gEBV was more proper than phenotype. The 
reason for this was bulls were more important than cows in 
animal breeding. But bulls do not have milk production trait 
data. However, if we used gEBVs as phenotype instead of traits 
data, we can performed GWAS using cows and bulls. Addition-
ally, milk production traits are strongly affected by environmental 
factors (herd, season, and so forth). Also, sample size is very 
important factor in GWAS. If we used phenotypes in this study, 
our sample size was only 488 individuals. This sample size is 
insufficient, especially considering recent GWAS trends. If we 
used gEBV as phenotypes, we can use 911 individuals in this 
analysis and perform GWAS with alarger sample size. Before 
real animal capacity tests, gEBV was directly used as selection 
indicator. Superior dairy cattle were selected based on gEBV as 
result of genomic selection. 
  GWAS is a promising method to discover common genetic 
variants that could explain disease or interesting economic traits 
of animals and plants. But inflation always is a problem in do-
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mesticated animal GWAS. Lambda values of milk production, 
fat and protein were 2.190281, 2.299665, and 2.350455, which 

were much higher than expected. We guessed that a strong 
reason for this inflation was very large LD in the Korean Holstein 

Figure 1. Manhattan plot of genome-wide association studies (GWAS) result of each milk traits after p-value integration. Each circle indicated each region containing 5 single 
nucleotide polymorphism (SNP) and circle with ring meant that region contained nearby gene. We provide the gene names which were significant in both GWAS and gene ontology 
analysis. a) milk production, b) milk fat, and c) milk protein. Grey dot line indicates the threshold of Bonferroni multiple test based on integrated p-values in each milk traits 
association test (genomic p-value<6.09E-06, equivalent to p-value = 0.05 after Bonferroni multiple correction).
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population. Korean Holsteins have been under intense directional 
artificial selection to increase milk quantity and quality. This 
selection could reduce genetic diversity of Korean Holstein 
population and increase LD. A previous study reported a reduc-
tion genetic diversity of Korean Holstein population through 
the effective population size [13]. We thought that inflation of 
p-values in animal GWAS was a general phenomenon and ap-
plied appropriate methods to detect significant genetic variants. 
First, we used genomic control p-values which did not have 
an inflation problem. But we could not detect significant genetic 
variants after multiple test through Bonferroni correction (Supple-
mentary Figure 11). The reason no SNP was significant in these 

association tests was because milk traits are complex phenotypes 
affected by several or many genetic factors instead of a few strong 
genetic factors. So we identified significant genetic regions as-
sociated with milk traits instead of SNPs. Also, we assumed that 
SNP was representative of a certain region and that a region 
test with the trait were repeated by SNPs in that region, because 
the Holstein LD block was very large. We defined that each region 
of the Holstein genome consisted of 5 SNPs and did not overlap. 
This meant that a continuous five SNPs on the physical map 
was one region in this study. We could define 8,209 regions on 
whole genome of Korean Holsteins and the mean and standard 
deviation of region size were 243,570.4 bp and 142,286.2 bp. 

Table 1. Significant genetic regions in GWAS results of milk production

CHR Region ID regDIS p-value Bonferroni SNP ID SNP Pos SNP 
p-value

Ensembl gene ID 
(Gene symbol) QTL trait

1 CHR1:126549908 131025 9.76E-08 8.01.E-04 BTB-00060751 126549908 6.12.E-03 ENSBTAG00000031178 (SLC9A9)
-126680933 ARS-BFGL-NGS-98257 126567481 8.52.E-03

ARS-BFGL-NGS-113021 126606801 4.13.E-03
ARS-BFGL-NGS-25639 126651501 8.75.E-03
ARS-BFGL-NGS-100109 126680933 2.26.E-03

2 CHR2:78302162 131569 1.45E-07 1.19.E-03 Hapmap26185-BTA-157573 78302162 5.34.E-03
-78433731 Hapmap40841-BTA-94957 78332368 4.66.E-03

BTB-01945480 78366932 2.95.E-03
BTB-01767882 78405537 1.20.E-02
BTB-01767855 78433731 7.74.E-03

2 CHR2:80605588 396947 3.35E-08 2.75.E-04 ARS-BFGL-NGS-41490 80605588 5.47.E-02 ENSBTAG00000014832 (TMEFF2)
-81002535 ARS-BFGL-NGS-5680 80666057 9.90.E-02 ENSBTAG00000046400

Hapmap50262-BTA-122131 80687709 4.01.E-02 ENSBTAG00000018653 (NABP1)
ARS-BFGL-NGS-94696 80970515 1.18.E-04 ENSBTAG00000018497 (SDPR)
ARS-BFGL-NGS-102243 81002535 4.76.E-05

10 CHR10:67538919 155620 1.76E-06 1.44.E-02 ARS-BFGL-NGS-247 67538919 8.03.E-03 ENSBTAG00000040151 (GCH1)
-67694539 ARS-BFGL-NGS-44563 67586540 1.72.E-03 ENSBTAG00000019120 (WDHD1)

BTA-74241-no-rs 67626007 2.88.E-02
ARS-BFGL-NGS-32233 67648206 8.47.E-03
ARS-BFGL-BAC-15431 67694539 3.89.E-02

10 CHR10:80181163 386681 5.25E-07 4.31.E-03 ARS-BFGL-NGS-117202 80181163 9.79.E-01 ENSBTAG00000045041 (7SK)
-80567844 ARS-BFGL-BAC-11003 80410977 2.46.E-05 ENSBTAG00000018971 (RAD51B)

ARS-BFGL-NGS-41880 80525247 1.84.E-03 ENSBTAG00000014334 (ZFYVE26)
BTB-00437473 80546262 2.73.E-01
ARS-BFGL-NGS-3980 80567844 2.56.E-03

13 CHR13:1278678 280487 3.40E-07 2.79.E-03 ARS-BFGL-BAC-12483 1278678 8.63.E-03 ENSBTAG00000008338 (PLCB1)
-1559165 Hapmap47208-BTA-15912 1299992 4.19.E-01

Hapmap60144-rs29013559 1397454 4.45.E-04
Hapmap45253-BTA-15908 1477972 3.68.E-03
ARS-BFGL-NGS-115902 1559165 3.13.E-03

13 CHR13:1867669 114922 2.71E-06 2.23.E-02 BTB-01324240 1867669 1.63.E-03
-1982591 Hapmap39731-BTA-23124 1912749 6.18.E-01

BTB-01324017 1966648 4.02.E-01
ARS-USMARC-Parent-EF026087-rs29011643 1982209 7.22.E-04
UA-IFASA-5150 1982591 7.56.E-04

20 CHR20:58292591 300031 7.71E-07 6.33.E-03 Hapmap38462-BTA-110556 58292591 8.18.E-02 ENSBTAG00000013391 (ANKH)
-58592622 ARS-BFGL-NGS-110091 58362004 4.83.E-04 ENSBTAG00000003186 (OTULIN)

ARS-BFGL-NGS-111931 58405641 4.22.E-03 ENSBTAG00000045869
ARS-BFGL-NGS-96125 58449212 6.31.E-03 ENSBTAG00000045215 (U6)
Hapmap41960-BTA-74781 58592622 4.64.E-02

21 CHR21:4441252 230196 3.07E-06 2.52.E-02 BTA-105737-no-rs 4441252 3.36.E-01 ENSBTAG00000003392 (GABRA5)
-4671448 ARS-BFGL-NGS-36921 4482429 3.85.E-03

ARS-BFGL-BAC-30337 4558974 1.32.E-03
ARS-BFGL-NGS-18711 4638691 6.35.E-02
ARS-BFGL-NGS-12690 4671448 2.36.E-03

GWAS, genome-wide association studies; CHR, chromosome; SNP, single nucleotide polymorphism; QTL, quantitative trait locus.



www.ajas.info    315

Shin et al (2017) Asian-Australas J Anim Sci 30:309-319

We integrated 5 SNP p-values into 1 region p-values to assign 
significant level to each 8,209 regions. We thought that this 
approach could detect significant genetic regions and exclude 
false positive error. Using this approach, we identified several 
genetic regions and genes related to milk traits which have not 
been reported, previously.
  CHR2:80605588-81002535 was significant in all three associ-
ation tests and contained three protein coding genes (TMEFF2, 
NABP1, and SDPR). TMEFF2 encodes transmembrane protein 
with epidermal growth factor (EGF)-like and two follistatin-like 
domains 2. EGF was reported to affect various milk production 
traits [14]. NABP1 encodes Single-stranded DNA ssDNA-binding 
protein that is ubiquitous and essential for a variety of DNA 
metabolic processes, including replication, recombination, and 
detection and repair of damage. SDPR encodes a calcium-inde-

pendent phospholipid-binding protein whose expression increases 
in serum-starved cells. Serum related to density of several sub-
stances in milk and these affected milk production. So, we 
guessed that these genes in CHR2:80605588-81002535 were 
strongly related to diverse mechanisms of milk production.
  There were 14 significant protein coding genes in the milk 
production association test, and we performed gene ontology 
analysis using them. Four terms were significant and three of 
total four terms were related to ion transport (Figure 2). Solute 
carrier family 9, subfamily a member 9 (SLC9A9), ankylosis 
protein homolog (ANKH), and gamma-aminobutyric acid A 
receptor, alpha 5 (GABRA5) genes were in these ion transport 
terms. Kramer et al reported in a previous GWAS study that 
SLC9A9 was in a region with possible high influence on the 
observed milk production trait [15]. ANKH encodes a multi-pass 

Table 2. Significant genetic regions in GWAS results of milk fat

CHR Region ID regDIS p-value Bonferroni SNP ID SNP Pos SNP 
p-value

Ensembl gene ID 
(Gene symbol) QTL trait

2 CHR2:78302162 131569 1.78E-08 1.46.E-04 Hapmap26185-BTA-157573 78302162 3.41.E-03
-78433731 Hapmap40841-BTA-94957 78332368 2.18.E-03

BTB-01945480 78366932 2.06.E-03
BTB-01767882 78405537 9.17.E-03
BTB-01767855 78433731 4.18.E-03

2 CHR2:78691609 201692 3.05E-06 2.50.E-02 BTB-01860738 78691609 5.29.E-04
-78893301 BTB-01860839 78726622 2.13.E-01

BTB-00103543 78749162 1.08.E-01
BTB-01374180 78872254 3.80.E-03
BTB-01374162 78893301 5.49.E-03

2 CHR2:80605588 396947 1.15E-06 9.45.E-03 ARS-BFGL-NGS-41490 80605588 6.49.E-02 ENSBTAG00000014832 (TMEFF2)
-81002535 ARS-BFGL-NGS-5680 80666057 1.92.E-02 ENSBTAG00000046400

Hapmap50262-BTA-122131 80687709 4.03.E-02 ENSBTAG00000018653 (NABP1)
ARS-BFGL-NGS-94696 80970515 1.89.E-03 ENSBTAG00000018497 (SDPR)
ARS-BFGL-NGS-102243 81002535 8.33.E-04

2 CHR2:86831095 173378 5.21E-06 4.27.E-02 BTA-90292-no-rs 86831095 6.92.E-01 ENSBTAG00000007635 (PLCL1) Meat_and_Carcass_Association 
-87004473 BTA-90298-no-rs 86868918 2.31.E-01 (Intermuscular fat percentage: QTLID25126)

Hapmap38934-BTA-117244 86909355 2.24.E-03 Meat_and_Carcass_Association
Hapmap41106-BTA-90288 86959111 2.79.E-03 (Subcutaneous fat: QTLID25127)
ARS-BFGL-NGS-55270 87004473 4.87.E-04 Meat_and_Carcass_Association

(Intermuscular fat percentage: QTLID25128)
Exterior_Association
(Udder structure: QTLID25015)
Milk_Association
(Milk fat percentage: QTLID25003)
Exterior_Association
(Udder structure: QTLID25017)

3 CHR3:69182813 208532 1.17E-06 9.61.E-03 BTB-01635025 69182813 3.76.E-01 ENSBTAG00000042950 (SNORD45)
-69391345 BTB-00133734 69292666 6.16.E-03 ENSBTAG00000024240 (ACADM)

BTB-00133701 69315385 1.54.E-03 ENSBTAG00000005864 (ASB17)
BTB-00133671 69342335 6.32.E-03 ENSBTAG00000043447 (SNORD45)
BTB-01711286 69391345 3.58.E-03 ENSBTAG00000018447 (RABGGTB)

ENSBTAG00000018448 (MSH4)
ENSBTAG00000042353 (SNORD45)

15 CHR15:67269656 159969 9.74E-08 8.00.E-04 ARS-BFGL-NGS-36801 67269656 5.86.E-02 ENSBTAG00000044158 Reproduction_QTL
-67429625 ARS-BFGL-NGS-111525 67323237 1.94.E-03 (LDLRAD3)

Hapmap41218-BTA-28547 67358867 3.53.E-03 (Calving ease (direct) : QTLID15193)
ARS-BFGL-NGS-92508 67386416 3.68.E-05 Reproduction_QTL
BTB-00611649 67429625 2.88.E-01 (Calving index: QTLID15194)

Reproduction_QTL

(Calving ease (maternal) : QTLID15192)

Production_QTL

(Average Daily Gain: QTLID22798)

GWAS, genome-wide association studies; CHR, chromosome; SNP, single nucleotide polymorphism; QTL, quantitative trait locus.
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transmembrane protein that controls pyrophosphate level and 
GABRA5 is one of GABA subunit which are ligand-gated chlo-
ride channels. Previous studies reported that ion balance was 
very important to Holstein lactation. For example, maintenance 
of calcium homeostasis is critical for many functions as hormone 
secretion and cation–anion difference affects health status and 
lactation performance [16]. Phospholipase C, Beta 1 (PLCB1) 
encoded by this gene plays an important role in the intracellular 
transduction of many extracellular signals. PLCB1 with GABRA5 
were reported as significant mammary gland genes affected 
by level of nutrient intake in pre-weaned Holstein heifers [17].
  There were 11 protein coding genes in milk fat association 
test, and we identified their biological meaning in Holsteins 
through gene ontology analysis. Two terms were significant 
and one of them was related to the lipid metabolic process 
(Figure 2). PLCL1 and ACADM (acyl-coenzyme A dehydro-
genase, C-4 to C-12 straight chain) genes were in cluster of lipid 
metabolic processes. PLCL1 encodes a protein which is involved 
in an inositol phospholipid-based intracellular signaling cascade 

and a component in the phospho-dependent endocytosis 
process of GABA-A receptor. Also six QTLs (related to meat 
and carcass association: 3 QTLs, exterior association: 2 QTLs, 
milk association: 1 QTL) belonged to CHR2:86831095-87004473 
region containing PLCL1 genes and three QTLs were Holstein 
specific [18]. Especially, a specific trait of milk association QTL 
(cattle QTL ID: 25003) was milk fat percentage and Holstein 
specific. ACADM is associated with lipid metabolism in fat depot 
and is the most important enzyme in the ACAD family [19]. 
Inside the mammary epithelial cell, the triglycerides synthesized 
at the outer surface of the smooth endoplasmic reticulum start 
coalescing and forming micro lipid droplets. Schlegel et al report-
ed the relative mRNA abundances of ACADM genes involved in 
fatty acid oxidation in the liver of dairy cows in the transition 
period and at different stages of lactation [20]. Ran Zhang re-
ported that low density lipoprotein receptor class A domain 
containing 3 (LDLRAD3) plays a central role in mammalian 
cholesterol metabolism through Next-Generation Sequencing 
in Transgenic Cattle [21]. Also four QTLs (related to reproduc-

Figure 2. Result of gene ontology analysis using gene sets of significant genetic regions as each genome-wide association studies (GWAS) result of milk production (skyblue), fat 
(pink), and protein (green).
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tion: 3 QTLs, production: 1 QTL) belonged to CHR15:67269656-
67429625 region containing LDLRAD3 genes and three QTLs 
related to reproduction were Holstein specific [22]. Addition-
ally, specific traits of three reproduction QTLs (cattle QTL ID: 
15,193, 15,194, and 15,192) were calving ease (direct), calving 
index and calving ease (maternal), respectively.
  There were 54 significant protein coding genes in the milk 
protein association test, and we identified twenty gene ontology 
terms to detect biological meaning of 54 genes related to milk 
protein (Figure 2). We clustered twenty gene ontology terms 
into 7 main terms using hierarchical clustering method (Figure 
3). Cluster 4 in Figure 3 had the most number of genes related 
to milk protein (21 genes) and biological meaning of this cluster 
was mRNA metabolic process. The need of energy and protein 
during lactation increases dramatically. In dairy cows there is 
more than a 5-fold increase in energy and protein requirements 
from late gestation to lactation [23]. Another study using more 
precise measurements of daily tissue protein synthesis reported 
that there is a 4-fold increase in mRNA translation in lactating 
compared to non-lactating mammary tissue in the cow [24]. 
Because the efficiency to transform dietary nitrogen into milk 
proteins is low (25% to 30%), protein synthesis is a highly active 
and energetically costly process, with only a minor part of the 
synthetic machinery apparently being used for production of 

milk proteins. Also previous study reported the abundance of 
the milk proteins (with the exception of albumin, as discussed 
below) is highly-dependent on the transcription level [25]. 
Cluster 5 in Figure 3 had 15 genes related to milk protein and 
biological meaning in this clustering was multicellular organism 
process. Multicellular organisms are composed of many special-
ized cells which differ in structure and function. So we guessed 
that these 15 genes have a special relationship with the milk 
protein ingredients or mechanisms. Interestingly, Cluster 3 in 
Figure 3 had 4 genes and their biological meaning was pro-
grammed cell death. Programmed cell death was not directly 
associated with milk protein. But programmed cell death has 
substantial meaning in Holstein mammary biological system. 
The regulation of cell death initiation coupled to the removal 
of cell corpses is an integral part of the mammary gland life 
cycle [26]. During pregnancy, epithelial cells of the mammary 
gland expand to form branched and lobuloalveolar structures 
to allow milk production after birth of the offspring. Then on 
weaning of the progeny, the mammary gland undergoes an 
important remodeling step, termed involution, during which 
the unessential mammary epithelial cells die and are largely 
removed [27]. Additionally, Baik reported that protein kinase 
C eta (PRKCH) were differential expressed in mammary tissues 
of lactating dairy cows [28].

Figure 3. Clustering based on result of gene ontology analysis using gene set of significant genetic regions as genome-wide association studies (GWAS) result of milk protein. 
Number in parenthesis means number of genes in each cluster group.
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  Our results strongly support a major involvement of milk 
production in the genetic predisposition for increasing capacity 
of Holstein milk production and suggest several novel genes 
as genetic factors in milk production. Our results are not over-
lapped by other some previous GWAS of Holstein production 
traits. But several previous studies reported that some of our 
results were related to milk production traits of Holstein. Also, 
we identified that some of our results overlapped QTLs of cattle 
milk production. Although we will have to collect more samples 
and further research will be needed, we thought that our in-
vestigated genetic regions were biologically related to milk 
production traits. 

CONCLUSION

These candidate regions and genes in our results may provide 
insight into the genetic makeup underlying milk production 
of Korean Holsteins.
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