DOI QR코드

DOI QR Code

Potential Allelic Association of Microsatellite Markers on Bovine Chromosome 5 with Carcass Traits in Hanwoo (Korean cattle)

Microsatellite 의 대립유전자 빈도를 이용한 한우의 경제형질과의 연관성 규명

  • Oh, Jae-Don (Genomic Informatics Center, Hankyong National University) ;
  • Kong, Hong-Sik (Genomic Informatics Center, Hankyong National University) ;
  • Cho, Byung-Wook (School of Bio-Resources and PNU-special Animal Biotechnology Center, Pusan National University) ;
  • Lee, Mi-Rang (School of Bio-Resources and PNU-special Animal Biotechnology Center, Pusan National University) ;
  • Jeon, Gwang-Joo (Genomic Informatics Center, Hankyong National University) ;
  • Lee, Hak-Kyo (Genomic Informatics Center, Hankyong National University)
  • 오재돈 (한경대학교 유전정보연구소) ;
  • 공홍식 (한경대학교 유전정보연구소) ;
  • 조병욱 (부산대학교 생명자원과학대학 생명자원과학 동물생명전공/동물곤충특성화사업단) ;
  • 이미랑 (부산대학교 생명자원과학대학 생명자원과학 동물생명전공/동물곤충특성화사업단) ;
  • 전광주 (한경대학교 유전정보연구소) ;
  • 이학교 (한경대학교 유전정보연구소)
  • Published : 2008.09.30

Abstract

A total of 10 polymorphic microsatellite markers on bovine chromosome 5 were used for allelic association tests with phenotypic characteristics in Hanwoo. The data analyzed in this study were collected from 326 steers. Chi-square tests were performed to compare the frequencies of individual alleles between the high and the low breeding value groups. The following breeding values were analyzed for QTL effects. The frequency of allele 239 of DIK2828 showed a significant difference between the high and the low breeding value groups in the breeding value of marbling score (MSBV). The allele 279 of BMC1009 was found to show significant differences in allelic distribution for the breeding value of cold carcass weight (CWBV) and the breeding value of backfat thickness (BFBV) and allele 285 showed significant differences in allelic distribution for CWBV, BFBV, and MSBV. The allele 200 of DIK4329 showed significant differences in allelic distributions for the breeding values of longissimus muscle area (LMABV) and BFBV. In this study, we identified the QTL for carcass traits at around 20 (DIK2828), 41 (BMC1009) and 95 (DIK4329) cM in chromosome 5. The results provided a useful reference for further positional candidate gene research and marker-assisted selection for fat metabolism and carcass traits.

본 연구는 한우의 5번 염색체 내에 존재하고 있는 10개의 microsatellite marker의 대립유전자 빈도를 이용하여 한우의 경제형질과의 연관성을 지닌 좌위를 탐색하기 위하여 실시하였다. 한우 326두를 대상으로 10개의 유전좌위를 분석한 결과 총 169개의 대립유전자가 검출되었다. 모든 유전좌위에서 다형성이 검출되었으며 각 유전좌위 별 대립유전자의 수는 9에서 28개로 나타났으며 평균 16.9로 나타났다. 가장 높은 PIC 값을 가진 유전좌위는 DIK2400(0.908)이었으며 가장 낮은 유전좌위는 DIK2718 (0.603)으로 검출되었다. 관측된 이형접합도에서는 DIK1048 (0.655)가 가장 높게 나타났으며, DIK2400 (0.906)은 가장 낮은 것으로 검출되었다. 분석된 MS marker들의 대립유전자의 빈도를 이용하여 경제형질과의 연관성을 탐색하기 위하여 각 경제형질별 육종가를 대상으로 상위그룹과 하위그룹으로 나누어 Chi-square검정을 실시하였다. 분석결과 DIK2828의 239 대립유전자는 근내지방도에서 상위그룹과 하위그룹의 빈도차가 유의적인 차이를 보이는 것으로 나타났다. BMC1009의 279 대립유전자는 도체중과 등지방두께에서 유의적인 차이를 확인하였으며 285대립유전자는 도체중, 등지방두께 그리고 근내지방도에서 유의적인 차이가 확인되었다. DIK4329의 200대립유전자는 등심단면적과 등지방두께에서 유의적인 차이가 확인되었다. 본 연구에서 유의적인 차이가 확인된 유전자좌위는 5번 염색체 내 20 (DIK2828), 41 (BMC1009) 그리고 95 (DIK4329) cM로 나타났다.

Keywords

References

  1. Andersson, L. 2001. Genetic dissection of phenotypic diversity in farm animals. Nat. Rev. Genet. 2, 130-138. https://doi.org/10.1038/35052563
  2. Boldman, K. G., L. A. Kriese, L. D. Van Vleck, C. P. Van Tassell and S. D. Kachman. 1995. A manual for use of MTDFREML. A set of programs to obtain estimates of variances and covariances ARS, USDA, Washington, DC.
  3. Casas, E., S. D. Shackelford, J. W. Keele, R. T. Stone, S. M. Kappes and M. Koohmaraie. 2000. Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. J. Anim. Sci. 78, 560-569.
  4. Casas, E., S. D. Shackelford, J. W. Keele, M. Koohmaraie, T. P. Smith and R. T. Stone. 2003. Detection of quantitative trait loci for growth and carcass composition in cattle. J. Anim. Sci. 81, 2976-2983
  5. Davis, G. P., D. J. S. Hetzel, N. J. Corbet, S. Scacheri, S. Lowden, J. Renaud, C. Mayne, R. Stevenson, S. S. Moore and K. Byrne. 1998. The mapping of quantitative trait loci for birth weight ina tropical beef herd. In: Proc, 6th World Congr. Genet. Appl. Livest. Prod., Armidale, NSW, Australia 26, 441-444.
  6. Jeremiah, L. E. 1996. The influence of subcutaneous fat thickness and marbling on beef. Food Res. Int. 29, 513-520. https://doi.org/10.1016/S0963-9969(96)00049-X
  7. Kim, J. J., F. Farnir, J. Savell and J. F. Taylor. 2003. Detection of quantitative trait loci for growth and beef carcass fatness traits in a cross between Bos Taurus (Angus) and Bos indicus (Brahman) cattle. J. Anim. Sci. 81, 1933-1942.
  8. Kneeland, J., C. Li, J. Basarab, W. M. Snelling, B. Benkel, B. Murdoch, C. Hansen and S. S. Moore. 2004. Identification and fine mapping of quantitative trait loci for growth traits on bovine chromosome 2, 6, 14, 19, 21 and 23 within one commercial line of Bos Taurus. J. Anim. Sci. 82, 3405-3414.
  9. Li. C., J. Basarab, W. M. Snelling, B. Benkel, B. Murdoch and S. S. Moore. 2002. The identification of common haplotypes on bovine chromosome 5 within commercial lines of Bos Taurus and their associations with growth traits. J. Anim. Sci. 80, 1187-1194.
  10. Li, C. J. Basarab, W. M. Snelling, B. Benkel, J. Kneeland, B. Murdoch, C. Hansen and S. S. Moore. Identification and fine mapping of quantitative trait loci for backfat on bovine chromosomes 2, 5, 6, 19, 21, and 23 in a commercial line of Bos taurus. 2004. J. Anim. Sci. 82, 967-972.
  11. Lozeman, F. J., C. K. Middleton, J. Deng, E. C. Kazala, C. Verhaege, P. S. Mir, A. Laroche, D. R. C. Bailey and R. J. Weselake. 2001. Characterization of microsomal diacylglycerol acytransferase activity from bovine adipose and muscle tissue. Comp. Biochem. Physiol. Part B 130, 105-115.
  12. MacNeil, M. D. and M. D. Grosz. 2002. Genome-wide scans for QTL affecting carcass traits in Hereford X composite double backcross populations. J. Anim. Sci. 80, 2316-2324.
  13. Powell, W. E. and D. L. Huffman. 1973. Predicting chemical composition of beef carcass from easily obtainable carcass variables. J. Anim. Sci. 36, 1069-1076.
  14. Stone, R. T., J. W. Keele, S. D. Shackelford, S. M. Kappes and M. Koohmaraie. 1999. A primary screen of the bovine genome for quantitative trait loci affecting carcass and growth traits. J. Anim. Sci. 77, 1379-1384.
  15. Stone R. T., E. Casas, T. P. Smith, J. W. Keele, G. Harhay, G. L. Bennett, M. Koohmaraie, T. L. Wheeler, S. D. Shackelford and W. M. Snelling. 2005. Identification of genetic markers for fat deposition and meat tenderness on bovine chromosome 5: development of a low-density single nucleotide polymorphism map. J. Anim. Sci. 83, 2280-2288.
  16. Wiener, P., I. Maclean, J. L. Williams and J. A. Woolliams. 2000. Testing for the presence of previously identified QTL for milk production traits in new populations. Anim. Genet. 31, 385-395. https://doi.org/10.1046/j.1365-2052.2000.00689.x
  17. Yeo, J. S., J. W. Kim, H. S. Shin and J. Y. Lee. 2004. Bootstrap analysis and major DNA markers of BM4311 microsatellite locus in Hanwoo chromosome 6. Asian-Asut. J. Anim. Sci. 17, 1033-1038 https://doi.org/10.5713/ajas.2004.1033