• Title/Summary/Keyword: Genomic Breeding Value

Search Result 65, Processing Time 0.027 seconds

Validation of selection accuracy for the total number of piglets born in Landrace pigs using genomic selection

  • Oh, Jae-Don;Na, Chong-Sam;Park, Kyung-Do
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.149-153
    • /
    • 2017
  • Objective: This study was to determine the relationship between estimated breeding value and phenotype information after farrowing when juvenile selection was made in candidate pigs without phenotype information. Methods: After collecting phenotypic and genomic information for the total number of piglets born by Landrace pigs, selection accuracy between genomic breeding value estimates using genomic information and breeding value estimates of best linear unbiased prediction (BLUP) using conventional pedigree information were compared. Results: Genetic standard deviation (${\sigma}_a$) for the total number of piglets born was 0.91. Since the total number of piglets born for candidate pigs was unknown, the accuracy of the breeding value estimated from pedigree information was 0.080. When genomic information was used, the accuracy of the breeding value was 0.216. Assuming that the replacement rate of sows per year is 100% and generation interval is 1 year, genetic gain per year is 0.346 head when genomic information is used. It is 0.128 when BLUP is used. Conclusion: Genetic gain estimated from single step best linear unbiased prediction (ssBLUP) method is by 2.7 times higher than that the one estimated from BLUP method, i.e., 270% more improvement in efficiency.

Analysis of Microsatellite Markers on Bovine Chromosomes 1 and 14 for Potential Allelic Association with Carcass Traits in Hanwoo (Korean Cattle)

  • Choi, I.S.;Kong, H.S.;Oh, J.D.;Yoon, D.H.;Cho, B.W.;Choi, Y.H.;Kim, K.S.;Choi, K.D.;Lee, H.K.;Jeon, G.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.927-930
    • /
    • 2006
  • This study was conducted to investigate potential effects of previously identified QTL regions on carcass traits in Hanwoo. The data analyzed in this study was collected from 326 steers of 67 proven sire. Thirteen micorsatellite markers spanning QTL regions on bovine chromosomes 1 and 14 were genotyped in 326 steers. The following breeding values were analyzed for QTL effects. Cold carcass weight breeding value (CCWBV), longissimus muscle area breeding value (LMABV), marbling score breeding value (MSBV) and backfat thickness breeding value (BFTBV). Chi-square tests were performed to compare frequencies of individual allele between high and low breeding value groups. Significant differences of allele frequencies in BMS711, MCM130, BMS4049, and BMS2263 were found. And also, in RM180, BL1029, BM4305, and BMS2055 there were significant differencies of allele frequencies. These results showed a potential application for investigation of putative QTL locations.

A study of the genomic estimated breeding value and accuracy using genotypes in Hanwoo steer (Korean cattle)

  • Eun Ho, Kim;Du Won, Sun;Ho Chan, Kang;Ji Yeong, Kim;Cheol Hyun, Myung;Doo Ho, Lee;Seung Hwan, Lee;Hyun Tae, Lim
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.681-691
    • /
    • 2021
  • The estimated breeding value (EBV) and accuracy of Hanwoo steer (Korean cattle) is an indicator that can predict the slaughter time in the future and carcass performance outcomes. Recently, studies using pedigrees and genotypes are being actively conducted to improve the accuracy of the EBV. In this study, the pedigree and genotype of 46 steers obtained from livestock farm A in Gyeongnam were used for a pedigree best linear unbiased prediction (PBLUP) and a genomic best linear unbiased prediction (GBLUP) to estimate and analyze the breeding value and accuracy of the carcass weight (CWT), eye muscle area (EMA), back-fat thickness (BFT), and marbling score (MS). PBLUP estimated the EBV and accuracy by constructing a numeric relationship matrix (NRM) from the 46 steers and reference population I (545,483 heads) with the pedigree and phenotype. GBLUP estimated genomic EBV (GEBV) and accuracy by constructing a genomic relationship matrix (GRM) from the 46 steers and reference population II (16,972 heads) with the genotype and phenotype. As a result, in the order of CWT, EMA, BFT, and MS, the accuracy levels of PBLUP were 0.531, 0.519, 0.524 and 0.530, while the accuracy outcomes of GBLUP were 0.799, 0.779, 0.768, and 0.810. The accuracy estimated by GBLUP was 50.1 - 53.1% higher than that estimated by PBLUP. GEBV estimated with the genotype is expected to show higher accuracy than the EBV calculated using only the pedigree and is thus expected to be used as basic data for genomic selection in the future.

Accuracy of genomic breeding value prediction for intramuscular fat using different genomic relationship matrices in Hanwoo (Korean cattle)

  • Choi, Taejeong;Lim, Dajeong;Park, Byoungho;Sharma, Aditi;Kim, Jong-Joo;Kim, Sidong;Lee, Seung Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.907-911
    • /
    • 2017
  • Objective: Intramuscular fat is one of the meat quality traits that is considered in the selection strategies for Hanwoo (Korean cattle). Different methods are used to estimate the breeding value of selection candidates. In the present work we focused on accuracy of different genotype relationship matrices as described by forni and pedigree based relationship matrix. Methods: The data set included a total of 778 animals that were genotyped for BovineSNP50 BeadChip. Among these 778 animals, 72 animals were sires for 706 reference animals and were used as a validation dataset. Single trait animal model (best linear unbiased prediction and genomic best linear unbiased prediction) was used to estimate the breeding values from genomic and pedigree information. Results: The diagonal elements for the pedigree based coefficients were slightly higher for the genomic relationship matrices (GRM) based coefficients while off diagonal elements were considerably low for GRM based coefficients. The accuracy of breeding value for the pedigree based relationship matrix (A) was 13% while for GRM (GOF, G05, and Yang) it was 0.37, 0.45, and 0.38, respectively. Conclusion: Accuracy of GRM was 1.5 times higher than A in this study. Therefore, genomic information will be more beneficial than pedigree information in the Hanwoo breeding program.

Genetic evaluation and accuracy analysis of commercial Hanwoo population using genomic data

  • Gwang Hyeon Lee;Yeon Hwa Lee;Hong Sik Kong
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.32-37
    • /
    • 2023
  • This study has evaluated the genomic estimated breeding value (GEBV) of the commercial Hanwoo population using the genomic best linear unbiased prediction (GBLUP) method and genomic information. Furthermore, it analyzed the accuracy and realized accuracy of the GEBV. 1,740 heads of the Hanwoo population which were analyzed using a single nucleotide polymorphism (SNP) Chip has selected as the test population. For carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling score (MS), the mean GEBVs estimated using the GBLUP method were 3.819, 0.740, -0.248, and 0.041, respectively and the accuracy of each trait was 0.743, 0.728, 0.737, and 0.765, respectively. The accuracy of the breeding value was affected by heritability. The accuracy was estimated to be low in EMA with low heritability and high in MS with high heritability. Realized accuracy values of 0.522, 0.404, 0.444, and 0.539 for CWT, EMA, BFT, and MS, respectively, showing the same pattern as the accuracy value. The results of this study suggest that the breeding value of each individual can be estimated with higher accuracy by estimating the GEBV using the genomic information of 18,499 reference populations. If this method is used and applied to individual selection in a commercial Hanwoo population, more precise and economical individual selection is possible. In addition, continuous verification of the GBLUP model and establishment of a reference population suitable for commercial Hanwoo populations in Korea will enable a more accurate evaluation of individuals.

Comparison of accuracy of breeding value for cow from three methods in Hanwoo (Korean cattle) population

  • Hyo Sang Lee;Yeongkuk Kim;Doo Ho Lee;Dongwon Seo;Dong Jae Lee;Chang Hee Do;Phuong Thanh N. Dinh;Waruni Ekanayake;Kil Hwan Lee;Duhak Yoon;Seung Hwan Lee;Yang Mo Koo
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.720-734
    • /
    • 2023
  • In Korea, Korea Proven Bulls (KPN) program has been well-developed. Breeding and evaluation of cows are also an essential factor to increase earnings and genetic gain. This study aimed to evaluate the accuracy of cow breeding value by using three methods (pedigree index [PI], pedigree-based best linear unbiased prediction [PBLUP], and genomic-BLUP [GBLUP]). The reference population (n = 16,971) was used to estimate breeding values for 481 females as a test population. The accuracy of GBLUP was 0.63, 0.66, 0.62 and 0.63 for carcass weight (CWT), eye muscle area (EMA), back-fat thickness (BFT), and marbling score (MS), respectively. As for the PBLUP method, accuracy of prediction was 0.43 for CWT, 0.45 for EMA, 0.43 for MS, and 0.44 for BFT. Accuracy of PI method was the lowest (0.28 to 0.29 for carcass traits). The increase by approximate 20% in accuracy of GBLUP method than other methods could be because genomic information may explain Mendelian sampling error that pedigree information cannot detect. Bias can cause reducing accuracy of estimated breeding value (EBV) for selected animals. Regression coefficient between true breeding value (TBV) and GBLUP EBV, PBLUP EBV, and PI EBV were 0.78, 0.625, and 0.35, respectively for CWT. This showed that genomic EBV (GEBV) is less biased than PBLUP and PI EBV in this study. In addition, number of effective chromosome segments (Me) statistic that indicates the independent loci is one of the important factors affecting the accuracy of BLUP. The correlation between Me and the accuracy of GBLUP is related to the genetic relationship between reference and test population. The correlations between Me and accuracy were -0.74 in CWT, -0.75 in EMA, -0.73 in MS, and -0.75 in BF, which were strongly negative. These results proved that the estimation of genetic ability using genomic data is the most effective, and the smaller the Me, the higher the accuracy of EBV.

Effect of single nucleotide polymorphism on the total number of piglets born per parity of three different pig breeds

  • Do, Kyoung-Tag;Jung, Soon-Woo;Park, Kyung-Do;Na, Chong-Sam
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.628-635
    • /
    • 2018
  • Objective: To determine the effects of genomic breeding values (GBV) and single nucleotide polymorphisms (SNP) on the total number of piglets born (TNB) in 3 pig breeds (Berkshire, Landrace, and Yorkshire). Methods: After collecting genomic information (Porcine SNP BeadChip) and phenotypic TNB records for each breed, the effects of GBV and SNP were estimated by using single step best linear unbiased prediction (ssBLUP) method. Results: The heritability estimates for TNB in Berkshire, Landrace, and Yorkshire breeds were 0.078, 0.107, and 0.121, respectively. The breeding value estimates for TNB in Berkshire, Landrace, and Yorkshire breeds were in the range of -1.34 to 1.47 heads, -1.79 to 1.87 heads, and -2.60 to 2.94 heads, respectively. Of sows having records for TNB, the reliability of breeding value for individuals with SNP information was higher than that for individuals without SNP information. Distributions of the SNP effects on TNB did not follow gamma distribution. Most SNP effects were near zero. Only a few SNPs had large effects. The numbers of SNPs with absolute value of more than 4 standard deviations in Berkshire, Landrace, and Yorkshire breeds were 11, 8, and 19, respectively. There was no SNP with absolute value of more than 5 standard deviations in Berkshire or Landrace. However, in Yorkshire, four SNPs (ASGA 0089457, ASGA0103374, ALGA0111816, and ALGA0098882) had absolute values of more than 5 standard deviations. Conclusion: There was no common SNP with large effect among breeds. This might be due to the large genetic composition differences and the small size of reference population. For the precise evaluation of genetic performance of individuals using a genomic selection method, it may be necessary to establish the appropriate size of reference population.

Optimization of Swine Breeding Programs Using Genomic Selection with ZPLAN+

  • Lopez, B.M.;Kang, H.S.;Kim, T.H.;Viterbo, V.S.;Kim, H.S.;Na, C.S.;Seo, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.640-645
    • /
    • 2016
  • The objective of this study was to evaluate the present conventional selection program of a swine nucleus farm and compare it with a new selection strategy employing genomic enhanced breeding value (GEBV) as the selection criteria. The ZPLAN+ software was employed to calculate and compare the genetic gain, total cost, return and profit of each selection strategy. The first strategy reflected the current conventional breeding program, which was a progeny test system (CS). The second strategy was a selection scheme based strictly on genomic information (GS1). The third scenario was the same as GS1, but the selection by GEBV was further supplemented by the performance test (GS2). The last scenario was a mixture of genomic information and progeny tests (GS3). The results showed that the accuracy of the selection index of young boars of GS1 was 26% higher than that of CS. On the other hand, both GS2 and GS3 gave 31% higher accuracy than CS for young boars. The annual monetary genetic gain of GS1, GS2 and GS3 was 10%, 12%, and 11% higher, respectively, than that of CS. As expected, the discounted costs of genomic selection strategies were higher than those of CS. The costs of GS1, GS2 and GS3 were 35%, 73%, and 89% higher than those of CS, respectively, assuming a genotyping cost of $120. As a result, the discounted profit per animal of GS1 and GS2 was 8% and 2% higher, respectively, than that of CS while GS3 was 6% lower. Comparison among genomic breeding scenarios revealed that GS1 was more profitable than GS2 and GS3. The genomic selection schemes, especially GS1 and GS2, were clearly superior to the conventional scheme in terms of monetary genetic gain and profit.

Predicting the Accuracy of Breeding Values Using High Density Genome Scans

  • Lee, Deuk-Hwan;Vasco, Daniel A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.162-172
    • /
    • 2011
  • In this paper, simulation was used to determine accuracies of genomic breeding values for polygenic traits associated with many thousands of markers obtained from high density genome scans. The statistical approach was based upon stochastically simulating a pedigree with a specified base population and a specified set of population parameters including the effective and noneffective marker distances and generation time. For this population, marker and quantitative trait locus (QTL) genotypes were generated using either a single linkage group or multiple linkage group model. Single nucleotide polymorphism (SNP) was simulated for an entire bovine genome (except for the sex chromosome, n = 29) including linkage and recombination. Individuals drawn from the simulated population with specified marker and QTL genotypes were randomly mated to establish appropriate levels of linkage disequilibrium for ten generations. Phenotype and genomic SNP data sets were obtained from individuals starting after two generations. Genetic prediction was accomplished by statistically modeling the genomic relationship matrix and standard BLUP methods. The effect of the number of linkage groups was also investigated to determine its influence on the accuracy of breeding values for genomic selection. When using high density scan data (0.08 cM marker distance), accuracies of breeding values on juveniles were obtained of 0.60 and 0.82, for a low heritable trait (0.10) and high heritable trait (0.50), respectively, in the single linkage group model. Estimates of 0.38 and 0.60 were obtained for the same cases in the multiple linkage group models. Unexpectedly, use of BLUP regression methods across many chromosomes was found to give rise to reduced accuracy in breeding value determination. The reasons for this remain a target for further research, but the role of Mendelian sampling may play a fundamental role in producing this effect.

Comparison on genomic prediction using pedigree BLUP and single step GBLUP through the Hanwoo full-sib family

  • Eun-Ho Kim;Ho-Chan Kang;Cheol-Hyun Myung;Ji-Yeong Kim;Du-Won Sun;Doo-Ho Lee;Seung-Hwan Lee;Hyun-Tae Lim
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1327-1335
    • /
    • 2023
  • Objective: When evaluating individuals with the same parent and no phenotype by pedigree best linear unbiased prediction (BLUP), it is difficult to explain carcass grade difference and select individuals because they have the same value in pedigree BLUP (PBLUP). However, single step GBLUP (ssGBLUP), which can estimate the breeding value suitable for the individual by adding genotype, is more accurate than the existing method. Methods: The breeding value and accuracy were estimated with pedigree BLUP and ssGBLUP using pedigree and genotype of 408 Hanwoo cattle from 16 families with the same parent among siblings produced by fertilized egg transplantation. A total of 14,225 Hanwoo cattle with pedigree, genotype and phenotype were used as the reference population. PBLUP obtained estimated breeding value (EBV) using the pedigree of the test and reference populations, and ssGBLUP obtained genomic EBV (GEBV) after constructing and H-matrix by integrating the pedigree and genotype of the test and reference populations. Results: For all traits, the accuracy of GEBV using ssGBLUP is 0.18 to 0.20 higher than the accuracy of EBV obtained with PBLUP. Comparison of EBV and GEBV of individuals without phenotype, since the value of EBV is estimated based on expected values of alleles passed down from common ancestors. It does not take Mendelian sampling into consideration, so the EBV of all individuals within the same family is estimated to be the same value. However, GEBV makes estimating true kinship coefficient based on different genotypes of individuals possible, so GEBV that corresponds to each individual is estimated rather than a uniform GEBV for each individual. Conclusion: Since Hanwoo cows bred through embryo transfer have a high possibility of having the same parent, if ssGBLUP after adding genotype is used, estimating true kinship coefficient corresponding to each individual becomes possible, allowing for more accurate estimation of breeding value.