Objective: This study was to determine the relationship between estimated breeding value and phenotype information after farrowing when juvenile selection was made in candidate pigs without phenotype information. Methods: After collecting phenotypic and genomic information for the total number of piglets born by Landrace pigs, selection accuracy between genomic breeding value estimates using genomic information and breeding value estimates of best linear unbiased prediction (BLUP) using conventional pedigree information were compared. Results: Genetic standard deviation (${\sigma}_a$) for the total number of piglets born was 0.91. Since the total number of piglets born for candidate pigs was unknown, the accuracy of the breeding value estimated from pedigree information was 0.080. When genomic information was used, the accuracy of the breeding value was 0.216. Assuming that the replacement rate of sows per year is 100% and generation interval is 1 year, genetic gain per year is 0.346 head when genomic information is used. It is 0.128 when BLUP is used. Conclusion: Genetic gain estimated from single step best linear unbiased prediction (ssBLUP) method is by 2.7 times higher than that the one estimated from BLUP method, i.e., 270% more improvement in efficiency.
This study was conducted to investigate potential effects of previously identified QTL regions on carcass traits in Hanwoo. The data analyzed in this study was collected from 326 steers of 67 proven sire. Thirteen micorsatellite markers spanning QTL regions on bovine chromosomes 1 and 14 were genotyped in 326 steers. The following breeding values were analyzed for QTL effects. Cold carcass weight breeding value (CCWBV), longissimus muscle area breeding value (LMABV), marbling score breeding value (MSBV) and backfat thickness breeding value (BFTBV). Chi-square tests were performed to compare frequencies of individual allele between high and low breeding value groups. Significant differences of allele frequencies in BMS711, MCM130, BMS4049, and BMS2263 were found. And also, in RM180, BL1029, BM4305, and BMS2055 there were significant differencies of allele frequencies. These results showed a potential application for investigation of putative QTL locations.
The estimated breeding value (EBV) and accuracy of Hanwoo steer (Korean cattle) is an indicator that can predict the slaughter time in the future and carcass performance outcomes. Recently, studies using pedigrees and genotypes are being actively conducted to improve the accuracy of the EBV. In this study, the pedigree and genotype of 46 steers obtained from livestock farm A in Gyeongnam were used for a pedigree best linear unbiased prediction (PBLUP) and a genomic best linear unbiased prediction (GBLUP) to estimate and analyze the breeding value and accuracy of the carcass weight (CWT), eye muscle area (EMA), back-fat thickness (BFT), and marbling score (MS). PBLUP estimated the EBV and accuracy by constructing a numeric relationship matrix (NRM) from the 46 steers and reference population I (545,483 heads) with the pedigree and phenotype. GBLUP estimated genomic EBV (GEBV) and accuracy by constructing a genomic relationship matrix (GRM) from the 46 steers and reference population II (16,972 heads) with the genotype and phenotype. As a result, in the order of CWT, EMA, BFT, and MS, the accuracy levels of PBLUP were 0.531, 0.519, 0.524 and 0.530, while the accuracy outcomes of GBLUP were 0.799, 0.779, 0.768, and 0.810. The accuracy estimated by GBLUP was 50.1 - 53.1% higher than that estimated by PBLUP. GEBV estimated with the genotype is expected to show higher accuracy than the EBV calculated using only the pedigree and is thus expected to be used as basic data for genomic selection in the future.
Objective: Intramuscular fat is one of the meat quality traits that is considered in the selection strategies for Hanwoo (Korean cattle). Different methods are used to estimate the breeding value of selection candidates. In the present work we focused on accuracy of different genotype relationship matrices as described by forni and pedigree based relationship matrix. Methods: The data set included a total of 778 animals that were genotyped for BovineSNP50 BeadChip. Among these 778 animals, 72 animals were sires for 706 reference animals and were used as a validation dataset. Single trait animal model (best linear unbiased prediction and genomic best linear unbiased prediction) was used to estimate the breeding values from genomic and pedigree information. Results: The diagonal elements for the pedigree based coefficients were slightly higher for the genomic relationship matrices (GRM) based coefficients while off diagonal elements were considerably low for GRM based coefficients. The accuracy of breeding value for the pedigree based relationship matrix (A) was 13% while for GRM (GOF, G05, and Yang) it was 0.37, 0.45, and 0.38, respectively. Conclusion: Accuracy of GRM was 1.5 times higher than A in this study. Therefore, genomic information will be more beneficial than pedigree information in the Hanwoo breeding program.
This study has evaluated the genomic estimated breeding value (GEBV) of the commercial Hanwoo population using the genomic best linear unbiased prediction (GBLUP) method and genomic information. Furthermore, it analyzed the accuracy and realized accuracy of the GEBV. 1,740 heads of the Hanwoo population which were analyzed using a single nucleotide polymorphism (SNP) Chip has selected as the test population. For carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling score (MS), the mean GEBVs estimated using the GBLUP method were 3.819, 0.740, -0.248, and 0.041, respectively and the accuracy of each trait was 0.743, 0.728, 0.737, and 0.765, respectively. The accuracy of the breeding value was affected by heritability. The accuracy was estimated to be low in EMA with low heritability and high in MS with high heritability. Realized accuracy values of 0.522, 0.404, 0.444, and 0.539 for CWT, EMA, BFT, and MS, respectively, showing the same pattern as the accuracy value. The results of this study suggest that the breeding value of each individual can be estimated with higher accuracy by estimating the GEBV using the genomic information of 18,499 reference populations. If this method is used and applied to individual selection in a commercial Hanwoo population, more precise and economical individual selection is possible. In addition, continuous verification of the GBLUP model and establishment of a reference population suitable for commercial Hanwoo populations in Korea will enable a more accurate evaluation of individuals.
Hyo Sang Lee;Yeongkuk Kim;Doo Ho Lee;Dongwon Seo;Dong Jae Lee;Chang Hee Do;Phuong Thanh N. Dinh;Waruni Ekanayake;Kil Hwan Lee;Duhak Yoon;Seung Hwan Lee;Yang Mo Koo
Journal of Animal Science and Technology
/
v.65
no.4
/
pp.720-734
/
2023
In Korea, Korea Proven Bulls (KPN) program has been well-developed. Breeding and evaluation of cows are also an essential factor to increase earnings and genetic gain. This study aimed to evaluate the accuracy of cow breeding value by using three methods (pedigree index [PI], pedigree-based best linear unbiased prediction [PBLUP], and genomic-BLUP [GBLUP]). The reference population (n = 16,971) was used to estimate breeding values for 481 females as a test population. The accuracy of GBLUP was 0.63, 0.66, 0.62 and 0.63 for carcass weight (CWT), eye muscle area (EMA), back-fat thickness (BFT), and marbling score (MS), respectively. As for the PBLUP method, accuracy of prediction was 0.43 for CWT, 0.45 for EMA, 0.43 for MS, and 0.44 for BFT. Accuracy of PI method was the lowest (0.28 to 0.29 for carcass traits). The increase by approximate 20% in accuracy of GBLUP method than other methods could be because genomic information may explain Mendelian sampling error that pedigree information cannot detect. Bias can cause reducing accuracy of estimated breeding value (EBV) for selected animals. Regression coefficient between true breeding value (TBV) and GBLUP EBV, PBLUP EBV, and PI EBV were 0.78, 0.625, and 0.35, respectively for CWT. This showed that genomic EBV (GEBV) is less biased than PBLUP and PI EBV in this study. In addition, number of effective chromosome segments (Me) statistic that indicates the independent loci is one of the important factors affecting the accuracy of BLUP. The correlation between Me and the accuracy of GBLUP is related to the genetic relationship between reference and test population. The correlations between Me and accuracy were -0.74 in CWT, -0.75 in EMA, -0.73 in MS, and -0.75 in BF, which were strongly negative. These results proved that the estimation of genetic ability using genomic data is the most effective, and the smaller the Me, the higher the accuracy of EBV.
Objective: To determine the effects of genomic breeding values (GBV) and single nucleotide polymorphisms (SNP) on the total number of piglets born (TNB) in 3 pig breeds (Berkshire, Landrace, and Yorkshire). Methods: After collecting genomic information (Porcine SNP BeadChip) and phenotypic TNB records for each breed, the effects of GBV and SNP were estimated by using single step best linear unbiased prediction (ssBLUP) method. Results: The heritability estimates for TNB in Berkshire, Landrace, and Yorkshire breeds were 0.078, 0.107, and 0.121, respectively. The breeding value estimates for TNB in Berkshire, Landrace, and Yorkshire breeds were in the range of -1.34 to 1.47 heads, -1.79 to 1.87 heads, and -2.60 to 2.94 heads, respectively. Of sows having records for TNB, the reliability of breeding value for individuals with SNP information was higher than that for individuals without SNP information. Distributions of the SNP effects on TNB did not follow gamma distribution. Most SNP effects were near zero. Only a few SNPs had large effects. The numbers of SNPs with absolute value of more than 4 standard deviations in Berkshire, Landrace, and Yorkshire breeds were 11, 8, and 19, respectively. There was no SNP with absolute value of more than 5 standard deviations in Berkshire or Landrace. However, in Yorkshire, four SNPs (ASGA 0089457, ASGA0103374, ALGA0111816, and ALGA0098882) had absolute values of more than 5 standard deviations. Conclusion: There was no common SNP with large effect among breeds. This might be due to the large genetic composition differences and the small size of reference population. For the precise evaluation of genetic performance of individuals using a genomic selection method, it may be necessary to establish the appropriate size of reference population.
The objective of this study was to evaluate the present conventional selection program of a swine nucleus farm and compare it with a new selection strategy employing genomic enhanced breeding value (GEBV) as the selection criteria. The ZPLAN+ software was employed to calculate and compare the genetic gain, total cost, return and profit of each selection strategy. The first strategy reflected the current conventional breeding program, which was a progeny test system (CS). The second strategy was a selection scheme based strictly on genomic information (GS1). The third scenario was the same as GS1, but the selection by GEBV was further supplemented by the performance test (GS2). The last scenario was a mixture of genomic information and progeny tests (GS3). The results showed that the accuracy of the selection index of young boars of GS1 was 26% higher than that of CS. On the other hand, both GS2 and GS3 gave 31% higher accuracy than CS for young boars. The annual monetary genetic gain of GS1, GS2 and GS3 was 10%, 12%, and 11% higher, respectively, than that of CS. As expected, the discounted costs of genomic selection strategies were higher than those of CS. The costs of GS1, GS2 and GS3 were 35%, 73%, and 89% higher than those of CS, respectively, assuming a genotyping cost of $120. As a result, the discounted profit per animal of GS1 and GS2 was 8% and 2% higher, respectively, than that of CS while GS3 was 6% lower. Comparison among genomic breeding scenarios revealed that GS1 was more profitable than GS2 and GS3. The genomic selection schemes, especially GS1 and GS2, were clearly superior to the conventional scheme in terms of monetary genetic gain and profit.
In this paper, simulation was used to determine accuracies of genomic breeding values for polygenic traits associated with many thousands of markers obtained from high density genome scans. The statistical approach was based upon stochastically simulating a pedigree with a specified base population and a specified set of population parameters including the effective and noneffective marker distances and generation time. For this population, marker and quantitative trait locus (QTL) genotypes were generated using either a single linkage group or multiple linkage group model. Single nucleotide polymorphism (SNP) was simulated for an entire bovine genome (except for the sex chromosome, n = 29) including linkage and recombination. Individuals drawn from the simulated population with specified marker and QTL genotypes were randomly mated to establish appropriate levels of linkage disequilibrium for ten generations. Phenotype and genomic SNP data sets were obtained from individuals starting after two generations. Genetic prediction was accomplished by statistically modeling the genomic relationship matrix and standard BLUP methods. The effect of the number of linkage groups was also investigated to determine its influence on the accuracy of breeding values for genomic selection. When using high density scan data (0.08 cM marker distance), accuracies of breeding values on juveniles were obtained of 0.60 and 0.82, for a low heritable trait (0.10) and high heritable trait (0.50), respectively, in the single linkage group model. Estimates of 0.38 and 0.60 were obtained for the same cases in the multiple linkage group models. Unexpectedly, use of BLUP regression methods across many chromosomes was found to give rise to reduced accuracy in breeding value determination. The reasons for this remain a target for further research, but the role of Mendelian sampling may play a fundamental role in producing this effect.
Objective: When evaluating individuals with the same parent and no phenotype by pedigree best linear unbiased prediction (BLUP), it is difficult to explain carcass grade difference and select individuals because they have the same value in pedigree BLUP (PBLUP). However, single step GBLUP (ssGBLUP), which can estimate the breeding value suitable for the individual by adding genotype, is more accurate than the existing method. Methods: The breeding value and accuracy were estimated with pedigree BLUP and ssGBLUP using pedigree and genotype of 408 Hanwoo cattle from 16 families with the same parent among siblings produced by fertilized egg transplantation. A total of 14,225 Hanwoo cattle with pedigree, genotype and phenotype were used as the reference population. PBLUP obtained estimated breeding value (EBV) using the pedigree of the test and reference populations, and ssGBLUP obtained genomic EBV (GEBV) after constructing and H-matrix by integrating the pedigree and genotype of the test and reference populations. Results: For all traits, the accuracy of GEBV using ssGBLUP is 0.18 to 0.20 higher than the accuracy of EBV obtained with PBLUP. Comparison of EBV and GEBV of individuals without phenotype, since the value of EBV is estimated based on expected values of alleles passed down from common ancestors. It does not take Mendelian sampling into consideration, so the EBV of all individuals within the same family is estimated to be the same value. However, GEBV makes estimating true kinship coefficient based on different genotypes of individuals possible, so GEBV that corresponds to each individual is estimated rather than a uniform GEBV for each individual. Conclusion: Since Hanwoo cows bred through embryo transfer have a high possibility of having the same parent, if ssGBLUP after adding genotype is used, estimating true kinship coefficient corresponding to each individual becomes possible, allowing for more accurate estimation of breeding value.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.