References
- Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001;157: 1819-29.
- Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA. The impact of genetic architecture on genome-wide evaluation methods. Genetics 2010;185:1021-31. https://doi.org/10.1534/genetics.110.116855
- VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci 2008;91:4414-23. https://doi.org/10.3168/jds.2007-0980
- VanRaden PM, Van Tassell CP, Wiggans GR, et al. Invited review: reliability of genomic predictions for North American Holstein bulls. J Dairy Sci 2009;92:16-24. https://doi.org/10.3168/jds.2008-1514
- Goddard ME. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 2008;136:245-57.
- Daetwyler HD, Villanueva B, Woolliams JA. Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS ONE 2008;3:e3395. https://doi.org/10.1371/journal.pone.0003395
- Scheet P, Stephens M. A fast and flexible statistical model for largescale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 2006;78:629-44. https://doi.org/10.1086/502802
- Forni S, Aguilar I, Misztal I. Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genet Sel Evol 2011;43:1. https://doi.org/10.1186/1297-9686-43-1
- Yang J, Benyamin B, McEvoy BP, et al. Commom SNPs explain a large proportion of the heritability for human height. Nat Genet 2010;42: 565-9. https://doi.org/10.1038/ng.608
- Habier D, Fernando RL, Dekkers JCM. The impact of genetic relationship information on genome-assisted breeding values. Genetics 2007;177:2389-97.
- Gilmour AR, Gogel BJ, Cullis BR, Welham SJ, Thompson R. ASReml User Guide Release 4.0. Hemel Hempstead, UK: VSN International Ltd., 2015.
- Goddard ME. Genomic selection: Prediction of accuracy and maximisation of long term response. Genetica 2009;136:245-57. https://doi.org/10.1007/s10709-008-9308-0
- Li Y, Kim JJ. Effective population size and signatures of selection using Bovine 50K SNP chips in Korean native cattle (Hanwoo). Evol Bioinfom Online 2015; 11:143-53.
- Bolormaa S, Hayes BJ, Savin K, et al. Genome-wide association studies for feedlot and growth traits in cattle. J Anim Sci 2011;89:1684-97. https://doi.org/10.2527/jas.2010-3079
- Park BH, Choi TJ, Kim S, Oh SH. National genetic evaluation of Hanwoo (Korean native cattle). Asian-Australas J Anim Sci 2013; 26:151-6. https://doi.org/10.5713/ajas.2012.12439
Cited by
- Imputation from SNP chip to sequence: a case study in a Chinese indigenous chicken population vol.9, pp.1, 2018, https://doi.org/10.1186/s40104-018-0241-5
- Accuracy of genomic selection predictions for hip height in Brahman cattle using different relationship matrices vol.53, pp.6, 2018, https://doi.org/10.1590/s0100-204x2018000600008
- The effect of progeny numbers and pedigree depth on the accuracy of the EBV with the BLUP method vol.46, pp.2, 2017, https://doi.org/10.7744/kjoas.20190015
- Single-step genomic prediction of Eucalyptus dunnii using different identity-by-descent and identity-by-state relationship matrices vol.127, pp.2, 2017, https://doi.org/10.1038/s41437-021-00450-9
- The accuracy of genomic prediction for meat quality traits in Hanwoo cattle when using genotypes from different SNP densities and preselected variants from imputed whole genome sequence vol.62, pp.1, 2017, https://doi.org/10.1071/an20659