• Title/Summary/Keyword: Genome-wide

Search Result 695, Processing Time 0.029 seconds

Transcriptome analysis of Panax ginseng response to high light stress

  • Jung, Je Hyeong;Kim, Ho-Youn;Kim, Hyoung Seok;Jung, Sang Hoon
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.312-320
    • /
    • 2020
  • Background: Ginseng (Panax ginseng Meyer) is an essential source of pharmaceuticals and functional foods. Ginseng productivity has been compromised by high light (HL) stress, which is one of the major abiotic stresses during the ginseng cultivation period. The genetic improvement for HL tolerance in ginseng could be facilitated by analyzing its genetic and molecular characteristics associated with HL stress. Methods: Genome-wide analysis of gene expression was performed under HL and recovery conditions in 1-year-old Korean ginseng (P. ginseng cv. Chunpoong) using the Illumina HiSeq platform. After de novo assembly of transcripts, we performed expression profiling and identified differentially expressed genes (DEGs). Furthermore, putative functions of identified DEGs were explored using Gene Ontology terms and Kyoto Encyclopedia of Genes and Genome pathway enrichment analysis. Results: A total of 438 highly expressed DEGs in response to HL stress were identified and selected from 29,184 representative transcripts. Among the DEGs, 326 and 114 transcripts were upregulated and downregulated, respectively. Based on the functional analysis, most upregulated and a significant number of downregulated transcripts were related to stress responses and cellular metabolic processes, respectively. Conclusion: Transcriptome profiling could be a strategy to comprehensively elucidate the genetic and molecular mechanisms of HL tolerance and susceptibility. This study would provide a foundation for developing breeding and metabolic engineering strategies to improve the environmental stress tolerance of ginseng.

Detection and Characterization of a Lytic Pediococcus Bacteriophage from the Fermenting Cucumber Brine

  • Yoon, Sung-Sik;Baprangou-Poueys Roudolphe;Jr Fred Breidt;Fleming Henry P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.262-270
    • /
    • 2007
  • Of the twelve lytic bacteriophages recovered from five different fermenting cucumber tanks that were inoculated with Pediococcus sp. LA0281, a lytic phage, ${\phi}ps05$, was characterized in the present study. The plaques were mostly clear and round-shaped on the lawn of starter strain, indicating lytic phage. Overall appearance indicated that it belongs to the Siphoviridae family or Bradley's group B1, with a small isometric head and a flexible noncontractile tail with swollen base plate. The average size was found to be 51.2 nm in head diameter and 11.6 nm wide ${\times}$ 129.6 nm long for the tail. The single-step growth kinetics curve showed that the eclipse and the latent period were 29 min and 34 min, respectively, and an average burst size was calculated to be 12 particles per infective center. The optimum proliferating temperature ($35^{\circ}C$) was slightly lower than that of cell growth ($35\;to\;40^{\circ}C$). The structural proteins revealed by SDS-PAGE consisted of one main protein of 33 kDa and three minor proteins of 85, 58, and 52 kDa. The phage genome was a linear double-stranded DNA without cohesive ends. Based on the single and double digestion patterns obtained by EcoRI, HindIII, and SalI, the physical map was constructed. The overall size of the phage genome was estimated to be 24.1 kb. The present report describes the presence of a lytic phage active against a commercial starter culture Pediococcus sp. LA0281 in cucumber fermentation, and a preliminary study characterizes the phage on bacterial successions in the process of starter-added cucumber fermentation.

Genome-wide Association Study of Berry-related Traits in Grape Seedlings (포도의 교배집단을 이용한 과립 형질에 대한 유전체 전장 연관 분석)

  • Ryu, Hyang Hwa;Hur, Youn Young;Im, Dong Jun;Kim, Su Jin;Park, Seo-Jun;Lee, Dong hoon;Choi, Kyeong Ok
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.19-19
    • /
    • 2019
  • 유전체 전장 연관분석 (GWAS)은 단일염기다형성(SNP)의 유전자형과 표현형 간의 통계적인 연관성을 분석함으로써 품종 선발용 SNP Marker 개발에 응용되고 있다. 본 연구에서는 Tano Red와 Ruby seedless 교배실생 278 계통을 대상으로 여러 과실 특성에 따른 관련 SNP를 동정함으로써 육종 선발에 필요한 DNA marker 개발에 필요한 기초 유전 자료를 얻고자 하였다. 한 계통 당 5~10개의 포도알을 선택하여 과립중, 과육탄성, 과피탄성, 과육경도, 과피경도, 과립당 종자갯수, 과립당 종자무게 및 인장강도를 측정하였다. 각 개체는 Genotyping by sequencing (GBS) 방법으로 Sequencing하여 Reference genome (Vitis vinifera PN40024 12X v2.)과 mapping 하였다. MAF (Minor allele frequency) >5%, Missing Data <30% 의 조건을 가진 SNPs 만 1차 선발하여 TASSEL과 GAPIT 프로그램으로 GWAS 분석을 하였다. Manhattan plot 결과 과립중 형질에서는 33개, 과립당 종자무게 25개와 인장강도에서는 20개의 통계학적으로 유의한 SNPs 가 선발되었고, 특이적으로 이들 모두 18번 염색체에서 발견되었다. 그러나 나머지 형질에서는 유의한 차이를 보이는 SNPs를 선발하지 못하였다. 과실의 인장강도는 수확 후 저장성과 유통과정에 영향을 미치기 때문에 Marker 개발을 통한 품종선별이 중요하다. 향후 이러한 특성과 본 연구를 통해 동정된 SNPs 의 상관관계를 구체적으로 연구하여 Marker 개발에 활용하고자 한다.

  • PDF

Development of Cleaved Amplified Polymorphic Sequence Markers of Lentinula edodes Cultivars Sanbaekhyang and Sulbaekhyang (표고 품종 산백향과 설백향 구분을 위한 CAPS 마커 개발)

  • Moon, Suyun;Hong, Chang Pyo;Ryu, Hojin;Lee, Hwa-Yong
    • The Korean Journal of Mycology
    • /
    • v.49 no.1
    • /
    • pp.33-44
    • /
    • 2021
  • Lentinula edodes (Berk.) Pegler, the most produced mushroom in the world, is an edible mushroom with very high nutritional and pharmacological value. Currently, interest in the protection of genetic resources is increasing worldwide, and securing the distinction between new cultivars is very important. Therefore, the development of efficient molecular markers that can discriminate between L. edodes cultivars is required. In this study, we developed cleaved amplified polymorphic sequence (CAPS) markers for the identification of L. edodes cultivars (Sanbaekhyang and Sulbaekhyang). These markers were developed from whole genome sequencing data from L. edodes monokaryon strain B17 and resequencing data from 40 cultivars. A nucleotide deletion existed in scaffold 19 POS 214449 in Sanbaekhyang (GT→G), and a single nucleotide polymorphism changed in scaffold 7 POS 215801 in Sulbaekhyang (G→A). The restriction enzymes Hha I and HpyCH4IV distinguished Sanbaekhyang and Sulbaekhyang, respectively, from other cultivars. Thus, we developed two CAPS markers for the identification of the L. edodes cultivars Sanbaekhyang and Sulbaekhyang.

Whole-Genome Characterization of Alfalfa Mosaic Virus Obtained from Metagenomic Analysis of Vinca minor and Wisteria sinensis in Iran: with Implications for the Genetic Structure of the Virus

  • Moradi, Zohreh;Mehrvar, Mohsen
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.619-631
    • /
    • 2021
  • Alfalfa mosaic virus (AMV), an economically important pathogen, is present worldwide with a very wide host range. This work reports for the first time the infection of Vinca minor and Wisteria sinensis with AMV using RNA sequencing and reverse transcription polymerase chain reaction confirmation. De novo assembly and annotating of contigs revealed that RNA1, RNA2, and RNA3 genomic fragments consist of 3,690, 2,636, and 2,057 nucleotides (nt) for IR-VM and 3,690, 2,594, and 2,057 nt for IR-WS. RNA1 and RNA3 segments of IR-VM and IR-WS closely resembled those of the Chinese isolate HZ, with 99.23-99.26% and 98.04-98.09% nt identity, respectively. Their RNA2 resembled that of Canadian isolate CaM and American isolate OH-2-2017, with 97.96-98.07% nt identity. The P2 gene revealed more nucleotide diversity compared with other genes. Genes in the AMV genome were under dominant negative selection during evolution, and the P1 and coat protein (CP) proteins were subject to the strongest and weakest purifying selection, respectively. In the population genetic analysis based on the CP gene sequences, all 107 AMV isolates fell into two main clades (A, B) and isolates of clade A were further divided into three groups with significant subpopulation differentiation. The results indicated moderate genetic variation within and no clear geographic or genetic structure between the studied populations, implying moderate gene flow can play an important role in differentiation and distribution of genetic diversity among populations. Several factors have shaped the genetic structure and diversity of AMV: selection, recombination/reassortment, gene flow, and random processes such as founder effects.

Knockdown of vps54 aggravates tamoxifen-induced cytotoxicity in fission yeast

  • Lee, Sol;Nam, Miyoung;Lee, Ah-Reum;Baek, Seung-Tae;Kim, Min Jung;Kim, Ju Seong;Kong, Andrew Hyunsoo;Lee, Minho;Lee, Sook-Jeong;Kim, Seon-Young;Kim, Dong-Uk;Hoe, Kwang-Lae
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.39.1-39.8
    • /
    • 2021
  • Tamoxifen (TAM) is an anticancer drug used to treat estrogen receptor (ER)-positive breast cancer. However, its ER-independent cytotoxic and antifungal activities have prompted debates on its mechanism of action. To achieve a better understanding of the ER-independent antifungal action mechanisms of TAM, we systematically identified TAM-sensitive genes through microarray screening of the heterozygous gene deletion library in fission yeast (Schizosaccharomyces pombe). Secondary confirmation was followed by a spotting assay, finally yielding 13 TAM-sensitive genes under the drug-induced haploinsufficient condition. For these 13 TAM-sensitive genes, we conducted a comparative analysis of their Gene Ontology (GO) 'biological process' terms identified from other genome-wide screenings of the budding yeast deletion library and the MCF7 breast cancer cell line. Several TAM-sensitive genes overlapped between the yeast strains and MCF7 in GO terms including 'cell cycle' (cdc2, rik1, pas1, and leo1), 'signaling' (sck2, oga1, and cki3), and 'vesicle-mediated transport' (SPCC126.08c, vps54, sec72, and tvp15), suggesting their roles in the ER-independent cytotoxic effects of TAM. We recently reported that the cki3 gene with the 'signaling' GO term was related to the ER-independent antifungal action mechanisms of TAM in yeast. In this study, we report that haploinsufficiency of the essential vps54 gene, which encodes the GARP complex subunit, significantly aggravated TAM sensitivity and led to an enlarged vesicle structure in comparison with the SP286 control strain. These results strongly suggest that the vesicle-mediated transport process might be another action mechanism of the ER-independent antifungal or cytotoxic effects of TAM.

COVID-19 progression towards ARDS: a genome wide study reveals host factors underlying critical COVID-19

  • Shama Mujawar;Gayatri Patil;Srushti Suthar;Tanuja Shendkar;Vaishnavi Gangadhar
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.16.1-16.14
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) is a viral infection produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus epidemic, which was declared a global pandemic in March 2020. The World Health Organization has recorded around 43.3 billion cases and 59.4 million casualties to date, posing a severe threat to global health. Severe COVID-19 indicates viral pneumonia caused by the SARS-CoV-2 infections, which can induce fatal consequences, including acute respiratory distress syndrome (ARDS). The purpose of this research is to better understand the COVID-19 and ARDS pathways, as well as to find targeted single nucleotide polymorphism. To accomplish this, we retrieved over 100 patients' samples from the Sequence Read Archive, National Center for Biotechnology Information. These sequences were processed through the Galaxy server next generation sequencing pipeline for variant analysis and then visualized in the Integrative Genomics Viewer, and performed statistical analysis using t-tests and Bonferroni correction, where six major genes were identified as DNAH7, CLUAP1, PPA2, PAPSS1, TLR4, and IFITM3. Furthermore, a complete understanding of the genomes of COVID-19-related ARDS will aid in the early identification and treatment of target proteins. Finally, the discovery of novel therapeutics based on discovered proteins can assist to slow the progression of ARDS and lower fatality rates.

Association of coffee consumption with type 2 diabetes and glycemic traits: a Mendelian randomization study

  • Hyun Jeong Cho;Akinkunmi Paul Okekunle ;Ga-Eun Yie ;Jiyoung Youn ;Moonil Kang;Taiyue Jin;Joohon Sung;Jung Eun Lee
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.789-802
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Habitual coffee consumption was inversely associated with type 2 diabetes (T2D) and hyperglycemia in observational studies, but the causality of the association remains uncertain. This study tested a causal association of genetically predicted coffee consumption with T2D using the Mendelian randomization (MR) method. SUBJECTS/METHODS: We used five single-nucleotide polymorphisms (SNPs) as instrumental variables (IVs) associated with habitual coffee consumption in a previous genome-wide association study among Koreans. We analyzed the associations between IVs and T2D, fasting blood glucose (FBG), 2h-postprandial glucose (2h-PG), and glycated haemoglobin (HbA1C) levels. The MR results were further evaluated by standard sensitivity tests for possible pleiotropism. RESULTS: MR analysis revealed that increased genetically predicted coffee consumption was associated with a reduced prevalence of T2D; ORs per one-unit increment of log-transformed cup per day of coffee consumption ranged from 0.75 (0.62-0.90) for the weighted mode-based method to 0.79 (0.62-0.99) for Wald ratio estimator. We also used the inverse-variance-weighted method, weighted median-based method, MR-Egger method, and MR-PRESSO method. Similarly, genetically predicted coffee consumption was inversely associated with FBG and 2h-PG levels but not with HbA1c. Sensitivity measures gave similar results without evidence of pleiotropy. CONCLUSIONS: A genetic predisposition to habitual coffee consumption was inversely associated with T2D prevalence and lower levels of FBG and 2h-PG profiles. Our study warrants further exploration.

The Prediction Ability of Genomic Selection in the Wheat Core Collection

  • Yuna Kang;Changsoo Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.235-235
    • /
    • 2022
  • Genome selection is a promising tool for plant and animal breeding, which uses genome-wide molecular marker data to capture large and small effect quantitative trait loci and predict the genetic value of selection candidates. Genomic selection has been shown previously to have higher prediction accuracies than conventional marker-assisted selection (MAS) for quantitative traits. In this study, the prediction accuracy of 10 agricultural traits in the wheat core group with 567 points was compared. We used a cross-validation approach to train and validate prediction accuracy to evaluate the effects of training population size and training model.As for the prediction accuracy according to the model, the prediction accuracy of 0.4 or more was evaluated except for the SVN model among the 6 models (GBLUP, LASSO, BayseA, RKHS, SVN, RF) used in most all traits. For traits such as days to heading and days to maturity, the prediction accuracy was very high, over 0.8. As for the prediction accuracy according to the training group, the prediction accuracy increased as the number of training groups increased in all traits. It was confirmed that the prediction accuracy was different in the training population according to the genetic composition regardless of the number. All training models were verified through 5-fold cross-validation. To verify the prediction ability of the training population of the wheat core collection, we compared the actual phenotype and genomic estimated breeding value using 35 breeding population. In fact, out of 10 individuals with the fastest days to heading, 5 individuals were selected through genomic selection, and 6 individuals were selected through genomic selection out of the 10 individuals with the slowest days to heading. Therefore, we confirmed the possibility of selecting individuals according to traits with only the genotype for a shorter period of time through genomic selection.

  • PDF

Identification of druggable genes for multiple myeloma based on genomic information

  • Rahmat Dani Satria;Lalu Muhammad Irham;Wirawan Adikusuma;Anisa Nova Puspitaningrum;Arief Rahman Afief;Riat El Khair;Abdi Wira Septama
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.31.1-31.8
    • /
    • 2023
  • Multiple myeloma (MM) is a hematological malignancy. It is widely believed that genetic factors play a significant role in the development of MM, as investigated in numerous studies. However, the application of genomic information for clinical purposes, including diagnostic and prognostic biomarkers, remains largely confined to research. In this study, we utilized genetic information from the Genomic-Driven Clinical Implementation for Multiple Myeloma database, which is dedicated to clinical trial studies on MM. This genetic information was sourced from the genome-wide association studies catalog database. We prioritized genes with the potential to cause MM based on established annotations, as well as biological risk genes for MM, as potential drug target candidates. The DrugBank database was employed to identify drug candidates targeting these genes. Our research led to the discovery of 14 MM biological risk genes and the identification of 10 drugs that target three of these genes. Notably, only one of these 10 drugs, panobinostat, has been approved for use in MM. The two most promising genes, calcium signal-modulating cyclophilin ligand (CAMLG) and histone deacetylase 2 (HDAC2), were targeted by four drugs (cyclosporine, belinostat, vorinostat, and romidepsin), all of which have clinical evidence supporting their use in the treatment of MM. Interestingly, five of the 10 drugs have been approved for other indications than MM, but they may also be effective in treating MM. Therefore, this study aimed to clarify the genomic variants involved in the pathogenesis of MM and highlight the potential benefits of these genomic variants in drug discovery.