• Title/Summary/Keyword: Genome wide

Search Result 704, Processing Time 0.027 seconds

Replication of the Association between Copy Number Variation on 8p23.1 and Autism by Using ASD-specific BAC Array

  • Woo, Jung-Hoon;Yang, Song-Ju;Yim, Seon-Hee;Hu, Hae-Jin;Shin, Myung-Ju;Oh, Eun-Hee;Kang, Hyun-Woong;Park, Seon-Yang;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.8 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • To discover genetic markers for autism spectrum disorder (ASD), we previously applied genome-wide BAC array comparative genomic hybridization (array-CGH) to 28 autistic patients and 62 normal controls in Korean population, and identified that chromosomal losses on 8p23.1 and on 17p11.2 are significantly associated with autism. In this study, we developed an 8.5K ASD-specific BAC array covering 27 previously reported ASD-associated CNV loci including ours and examined whether the associations would be replicated in 8 ASD patient cell lines of four different ethnic groups and 10 Korean normal controls. As a result, a CNV-loss on 8p23.1 was found to be significantly more frequent in patients regardless of ethnicity (p<0.0001). This CNV region contains two coding genes, DEFA1 and DEFA3, which are members of DEFENSIN gene family. Two other CNVs on 17p11.2 and Xp22.31 were also distributed differently between ASDs and controls, but not significant (p=0.069 and 0.092, respectively). All the other loci did not show significant association. When these evidences are considered, the association between ASD and CNV of DEFENSIN gene seems worthy of further exploration to elucidate the pathogenesis of ASD. Validation studies with a larger sample size will be required to verify its biological implication.

Current status on plant functional genomics (식물 유전자 연구의 최근 동향)

  • Cho, Yong-Gu;Woo, Hee-Jong;Yoon, Ung-Han;Kim, Hong-Sig;Woo, Sun-Hee
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.115-124
    • /
    • 2010
  • As the completion of genome sequencing, large collection of expression data and the great efforts in annotating plant genomes, the next challenge is to systematically assign functions to all predicted genes in the genome. Functional genome analysis of plants has entered the high-throughput stage. The generations and collections of mutants at the genome-wide level form technological platform of functional genomics. However, to identify the exact function of unknown genes it is necessary to understand each gene's role in the complex orchestration of all gene activities in the plant cell. Gene function analysis therefore necessitates the analysis of temporal and spatial gene expression patterns. The most conclusive information about changes in gene expression levels can be gained from analysis of the varying qualitative and quantitative changes of messenger RNAs, proteins and metabolites. New technologies have been developed to allow fast and highly parallel measurements of these constituents of the cell that make up gene activity. We have reviewed currently employed technologies to identify unknown functions of predicted genes including map-based cloning, insertional mutagenesis, reverse genetics, chemical mutagenesis, microarray analysis, FOX-hunting system, gene silencing mutagenesis, proteomics and chemical genomics. Recent improvements in technologies for functional genomics enable whole-genome functional analysis, and thus open new avenues for studies of the regulations and functions of unknown genes in plants.

KBUD: The Korea Brain UniGene Database

  • Jeon, Yeo-Jin;Oh, Jung-Hwa;Yang, Jin-Ok;Kim, Nam-Soon
    • Genomics & Informatics
    • /
    • v.3 no.3
    • /
    • pp.86-93
    • /
    • 2005
  • Human brain EST data provide important clues for our understanding of the molecular biology associated with the function of the normal brain and the molecular pathophysiology with brain disorders. To systematically and efficiently study the function and disorders of the human brain, 45,773 human brain ESTs were collected from 27 human brain cDNA libraries, which were constructed from normal brains and brain disorders such as brain tumors, Parkinson's disease (PO) and epilepsy. An analysis of 45,773 human brain ESTs using our EST analysis pipeline resulted in 38,396 high-quality ESTs and 35,906 ESTs, which were coalesced into 8,246 unique gene clusters, showing a significant similarity to known genes in the human RefSeq, human mRNAs and UniGene database. In addition, among 8,246 gene clusters, 4,287 genes ($52\%$) were found to contain full-length cONA clones. To facilitate the extraction of useful information in collected these human brain ESTs, we developed a user-friendly interface system, the Korea Brain Unigene Database (KBUD). The KBUD web interface allows access to our human brain data through three major search modes, the BioCarta pathway, keywords and BLAST searches. Each result when viewed in KBUD offers comprehensive information concerning the analyzed human brain ESTs provided by our data as well as data linked to various other publiC databases. The user-friendly developed KBUD, the first world-wide web interface for human brain EST data with ESTs of human brain disorders as well as normal brains, will be a helpful system for developing a better understanding of the underlying mechanisms of the normal brain well as brain disorders. The KBUD system is freely accessible at http://kugi.kribb.re.kr/KU/cgi -bin/brain. pI.

Genome-wide scan for runs of homozygosity identifies candidate genes in Wannan Black pigs

  • Wu, Xudong;Zhou, Ren;Zhang, Wei;Cao, Bangji;Xia, Jing;Wang, Caiyun;Zhang, Xiaodong;Chu, Mingxing;Yin, Zongjun;Ding, Yueyun
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.1895-1902
    • /
    • 2021
  • Objective: Runs of homozygosity (ROH) are contiguous lengths of homozygous genotypes that can reveal inbreeding levels, selection pressure, and mating schemes. In this study, ROHs were evaluated in Wannan Black pigs to assess the inbreeding levels and the genome regions with high ROH frequency. Methods: In a previous study, we obtained 501.52 GB of raw data from resequencing (10×) of the genome and identified 21,316,754 single-nucleotide variants in 20 Wannan Black pig samples. We investigated the number, length, and frequency of ROH using resequencing data to characterize the homozygosity in Wannan Black pigs and identified genomic regions with high ROH frequencies. Results: In this work, 1,813 ROHs (837 ROHs in 100 to 500 kb, 449 ROHs in 500 to 1,000 kb, 527 ROHs in >1,000 kb) were identified in all samples, and the average genomic inbreeding coefficient (FROH) in Wannan Black pigs was 0.5234. Sixty-one regions on chromosomes 2, 3, 7, 8, 13, 15, and 16 harbored ROH islands. In total, 105 genes were identified in 42 ROH islands, among which some genes were related to production traits. Conclusion: This is the first study to identify ROH across the genome of Wannan Black pigs, the Chinese native breed of the Anhui province. Overall, Wannan Black pigs have high levels of inbreeding due to the influence of ancient and recent inbreeding due to the genome. These findings are a reliable resource for future studies and contribute to save and use the germplasm resources of Wannan Black pigs.

Comparative Genomic Analysis and BTEX Degradation Pathways of a Thermotolerant Cupriavidus cauae PHS1

  • Chandran Sathesh-Prabu;Jihoon Woo;Yuchan Kim;Suk Min Kim;Sun Bok Lee;Che Ok Jeon;Donghyuk Kim;Sung Kuk Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.875-885
    • /
    • 2023
  • Volatile organic compounds such as benzene, toluene, ethylbenzene, and isomers of xylenes (BTEX) constitute a group of monoaromatic compounds that are found in petroleum and have been classified as priority pollutants. In this study, based on its newly sequenced genome, we reclassified the previously identified BTEX-degrading thermotolerant strain Ralstonia sp. PHS1 as Cupriavidus cauae PHS1. Also presented are the complete genome sequence of C. cauae PHS1, its annotation, species delineation, and a comparative analysis of the BTEX-degrading gene cluster. Moreover, we cloned and characterized the BTEX-degrading pathway genes in C. cauae PHS1, the BTEX-degrading gene cluster of which consists of two monooxygenases and meta-cleavage genes. A genome-wide investigation of the PHS1 coding sequence and the experimentally confirmed regioselectivity of the toluene monooxygenases and catechol 2,3-dioxygenase allowed us to reconstruct the BTEX degradation pathway. The degradation of BTEX begins with aromatic ring hydroxylation, followed by ring cleavage, and eventually enters the core carbon metabolism. The information provided here on the genome and BTEX-degrading pathway of the thermotolerant strain C. cauae PHS1 could be useful in constructing an efficient production host.

Development and Application of High-density SNP Arrays in Genomic Studies of Domestic Animals

  • Fan, Bin;Du, Zhi-Qiang;Gorbach, Danielle M.;Rothschild, Max F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.7
    • /
    • pp.833-847
    • /
    • 2010
  • In the past decade, there have been many advances in whole-genome sequencing in domestic animals, as well as the development of "next-generation" sequencing technologies and high-throughput genotyping platforms. Consequently, these advances have led to the creation of the high-density SNP array as a state-of-the-art tool for genetics and genomics analyses of domestic animals. The emergence and utilization of SNP arrays will have significant impacts not only on the scale, speed, and expense of SNP genotyping, but also on theoretical and applied studies of quantitative genetics, population genetics and molecular evolution. The most promising applications in agriculture could be genome-wide association studies (GWAS) and genomic selection for the improvement of economically important traits. However, some challenges still face these applications, such as incorporating linkage disequilibrium (LD) information from HapMap projects, data storage, and especially appropriate statistical analyses on the high-dimensional, structured genomics data. More efforts are still needed to make better use of the high-density SNP arrays in both academic studies and industrial applications.

Yeast as a Touchstone in Post-genomic Research: Strategies for Integrative Analysis in Functional Genomics

  • Castrillo, Juan I.;Oliver, Stephen G.
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.93-106
    • /
    • 2004
  • The new complexity arising from the genome sequencing projects requires new comprehensive post-genomic strategies: advanced studies in regulatory mechanisms, application of new high-throughput technologies at a genome-wide scale, at the different levels of cellular complexity (genome, transcriptome, proteome and metabolome), efficient analysis of the results, and application of new bioinformatic methods in an integrative or systems biology perspective. This can be accomplished in studies with model organisms under controlled conditions. In this review a perspective of the favourable characteristics of yeast as a touchstone model in post-genomic research is presented. The state-of-the art, latest advances in the field and bottlenecks, new strategies, new regulatory mechanisms, applications (patents) and high-throughput technologies, most of them being developed and validated in yeast, are presented. The optimal characteristics of yeast as a well-defined system for comprehensive studies under controlled conditions makes it a perfect model to be used in integrative, 'systems biology' studies to get new insights into the mechanisms of regulation (regulatory networks) responsible of specific phenotypes under particular environmental conditions, to be applied to more complex organisms (e.g. plants, human).

Regulation of Development in Aspergillus nidulans and Aspergillus fumigatus

  • Yu, Jae-Hyuk
    • Mycobiology
    • /
    • v.38 no.4
    • /
    • pp.229-237
    • /
    • 2010
  • Members of the genus Aspergillus are the most common fungi and all reproduce asexually by forming long chains of conidiospores (or conidia). The impact of various Aspergillus species on humans ranges from beneficial to harmful. For example, several species including Aspergillus oryzae and Aspergillus niger are used in industry for enzyme production and food processing. In contrast, Aspergillus flavus produce the most potent naturally present carcinogen aflatoxins, which contaminate various plant- and animal-based foods. Importantly, the opportunistic human pathogen Aspergillus fumigatus has become the most prevalent airborne fungal pathogen in developed countries, causing invasive aspergillosis in immunocompromised patients with a high mortality rate. A. fumigatus produces a massive number of small hydrophobic conidia as the primarymeans of dispersal, survival, genome-protection, and infecting hosts. Large-scale genome-wide expression studies can now be conducted due to completion of A. fumigatus genome sequencing. However, genomics becomes more powerful and informative when combined with genetics. We have been investigating the mechanisms underlying the regulation of asexual development (conidiation) and gliotoxin biosynthesis in A. fumigatus, primarily focusing on a characterization of key developmental regulators identified in the model fungus Aspergillus nidulans. In this review, I will summarize our current understanding of how conidiation in two aspergilli is regulated.

Genomic Insights into Nematicidal Activity of a Bacterial Endophyte, Raoultella ornithinolytica MG against Pine Wilt Nematode

  • Shanmugam, Gnanendra;Dubey, Akanksha;Ponpandian, Lakshmi Narayanan;Rim, Soon Ok;Seo, Sang-Tae;Bae, Hanhong;Jeon, Junhyun
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.250-255
    • /
    • 2018
  • Pine wilt disease, caused by the nematode Bursaphelenchus xylophilus, is one of the most devastating conifer diseases decimating several species of pine trees on a global scale. Here, we report the draft genome of Raoultella ornithinolytica MG, which is isolated from mountain-cultivated ginseng plant as an bacterial endophyte and shows nematicidal activity against B. xylophilus. Our analysis of R. ornithinolytica MG genome showed that it possesses many genes encoding potential nematicidal factors in addition to some secondary metabolite biosynthetic gene clusters that may contribute to the observed nematicidal activity of the strain. Furthermore, the genome was lacking key components of avermectin gene cluster, suggesting that nematicidal activity of the bacterium is not likely due to the famous anthelmintic agent of wide-spread use, avermectin. This genomic information of R. ornithinolytica will provide basis for identification and engineering of genes and their products toward control of pine wilt disease.

Genome-wide Identification, Classification, and Expression Analysis of the Receptor-Like Protein Family in Tomato

  • Kang, Won-Hee;Yeom, Seon-In
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.435-444
    • /
    • 2018
  • Receptor-like proteins (RLPs) are involved in plant development and disease resistance. Only some of the RLPs in tomato (Solanum lycopersicum L.) have been functionally characterized though 176 genes encoding RLPs, which have been identified in the tomato genome. To further understand the role of RLPs in tomato, we performed genome-guided classification and transcriptome analysis of these genes. Phylogenic comparisons revealed that the tomato RLP members could be divided into eight subgroups and that the genes evolved independently compared to similar genes in Arabidopsis. Based on location and physical clustering analyses, we conclude that tomato RLPs likely expanded primarily through tandem duplication events. According to tissue specific RNA-seq data, 71 RLPs were expressed in at least one of the following tissues: root, leaf, bud, flower, or fruit. Several genes had expression patterns that were tissue specific. In addition, tomato RLP expression profiles after infection with different pathogens showed distinguish gene regulations according to disease induction and resistance response as well as infection by bacteria and virus. Notably, Some RLPs were highly and/or unique expressed in susceptible tomato to pathogen, suggesting that the RLP could be involved in disease response, possibly as a host-susceptibility factor. Our study could provide an important clues for further investigations into the function of tomato RLPs involved in developmental and response to pathogens.