DOI QR코드

DOI QR Code

Regulation of Development in Aspergillus nidulans and Aspergillus fumigatus

  • Yu, Jae-Hyuk (Department of Bacteriology and Genetics, University of Wisconsin-Madison)
  • Received : 2010.09.28
  • Accepted : 2010.11.16
  • Published : 2010.12.31

Abstract

Members of the genus Aspergillus are the most common fungi and all reproduce asexually by forming long chains of conidiospores (or conidia). The impact of various Aspergillus species on humans ranges from beneficial to harmful. For example, several species including Aspergillus oryzae and Aspergillus niger are used in industry for enzyme production and food processing. In contrast, Aspergillus flavus produce the most potent naturally present carcinogen aflatoxins, which contaminate various plant- and animal-based foods. Importantly, the opportunistic human pathogen Aspergillus fumigatus has become the most prevalent airborne fungal pathogen in developed countries, causing invasive aspergillosis in immunocompromised patients with a high mortality rate. A. fumigatus produces a massive number of small hydrophobic conidia as the primarymeans of dispersal, survival, genome-protection, and infecting hosts. Large-scale genome-wide expression studies can now be conducted due to completion of A. fumigatus genome sequencing. However, genomics becomes more powerful and informative when combined with genetics. We have been investigating the mechanisms underlying the regulation of asexual development (conidiation) and gliotoxin biosynthesis in A. fumigatus, primarily focusing on a characterization of key developmental regulators identified in the model fungus Aspergillus nidulans. In this review, I will summarize our current understanding of how conidiation in two aspergilli is regulated.

Keywords

References

  1. Ebbole DJ. The Conidium. In: Borkovich KA, Ebbole DJ, editors. Cellular and molecular biology of filamentous fungi. Washington, DC: ASM Press; 2010. p. 577-90.
  2. Adams TH, Wieser JK, Yu JH. Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev 1998;62:35-54.
  3. Bennett JW. An overview of the genus Aspergillus. In: Machida M, Gomi K, editors. Aspergillus: molecular biology and genomics. Norfolk: Caister Academic Press; 2010. p. 1-17.
  4. Ni M, Gao N, Kwon NJ, Shin KS, Yu JH. Regulation of Aspergillus conidiation. In: Borkovich KA, Ebbole DJ, editors. Cellular and molecular biology of filamentous fungi. Washington, DC: ASM Press; 2010. p. 559-76.
  5. Rhodes JC, Askew DS. Aspergillus fumigatus. In: Borkovich KA, Ebbole DJ, editors. Cellular and molecular biology of filamentous fungi. Washington, DC: ASM Press; 2010. p.697-716.
  6. Mackenzie DW. Aspergillus in man. In: Vanden Bossche H, Mackenzie DW, Cauwenbergh G, editors. Aspergillus and aspergillosis. New York: Plenum Press; 1988. p. 1-8.
  7. Yu JH, Mah JH, Seo JA. Growth and developmental control in the model and pathogenic Aspergilli. Eukaryot Cell 2006; 5:1577-84. https://doi.org/10.1128/EC.00193-06
  8. Tao L, Yu JH. AbaA and WetA govern distinct stages of Aspergillus fumigatus development. Microbiology-SGM 2010. DOI:10.1099/mic.0.044271-0.
  9. Dagenais TR, Keller NP. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin Microbiol Rev 2009; 22:447-65. https://doi.org/10.1128/CMR.00055-08
  10. Denning DW. Invasive aspergillosis. Clin Infect Dis 1998; 26:781-803. https://doi.org/10.1086/513943
  11. Adams TH, Boylan MT, Timberlake WE. brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 1988;54:353-62. https://doi.org/10.1016/0092-8674(88)90198-5
  12. Mah JH, Yu JH. Upstream and downstream regulation of asexual development in Aspergillus fumigatus. Eukaryot Cell 2006;5:1585-95. https://doi.org/10.1128/EC.00192-06
  13. Adams TH, Deising H, Timberlake WE. brlA requires both zinc fingers to induce development. Mol Cell Biol 1990; 10:1815-7. https://doi.org/10.1128/MCB.10.4.1815
  14. Chang YC, Timberlake WE. Identification of Aspergillus brlA response elements (BREs) by genetic selection in yeast. Genetics 1993;133:29-38.
  15. Ni M, Yu JH. A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS One 2007;2:e970. https://doi.org/10.1371/journal.pone.0000970
  16. Clutterbuck AJ. A mutational analysis of conidial development in Aspergillus nidulans. Genetics 1969;63:317-27.
  17. Sewall TC, Mims CW, Timberlake WE. abaA controls phialide differentiation in Aspergillus nidulans. Plant Cell 1990;2:731-9. https://doi.org/10.1105/tpc.2.8.731
  18. Boylan MT, Mirabito PM, Willett CE, Zimmerman CR, Timberlake WE. Isolation and physical characterization of three essential conidiation genes from Aspergillus nidulans. Mol Cell Biol 1987;7:3113-8. https://doi.org/10.1128/MCB.7.9.3113
  19. Mirabito PM, Adams TH, Timberlake WE. Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell 1989;57:859-68. https://doi.org/10.1016/0092-8674(89)90800-3
  20. Aguirre J. Spatial and temporal controls of the Aspergillus brlA developmental regulatory gene. Mol Microbiol 1993;8:211-8. https://doi.org/10.1111/j.1365-2958.1993.tb01565.x
  21. Andrianopoulos A, Timberlake WE. ATTS, a new and conserved DNA binding domain. Plant Cell 1991;3:747-8. https://doi.org/10.1105/tpc.3.8.747
  22. Andrianopoulos A, Timberlake WE. The Aspergillus nidulans abaA gene encodes a transcriptional activator that acts as a genetic switch to control development. Mol Cell Biol 1994;14:2503-15. https://doi.org/10.1128/MCB.14.4.2503
  23. Aramayo R, Timberlake WE. The Aspergillus nidulans yA gene is regulated by abaA. EMBO J 1993;12:2039-48.
  24. Park BC, Park YH, Park HM. Activation of chsC transcription by AbaA during asexual development of Aspergillus nidulans. FEMS Microbiol Lett 2003;220:241-6. https://doi.org/10.1016/S0378-1097(03)00120-4
  25. Sewall TC, Mims CW, Timberlake WE. Conidium differentiation in Aspergillus nidulans wild-type and wet-white (wetA) mutant strains. Dev Biol 1990;138:499-508. https://doi.org/10.1016/0012-1606(90)90215-5
  26. Marshall MA, Timberlake WE. Aspergillus nidulans wetA activates spore-specific gene expression. Mol Cell Biol 1991;11:55-62. https://doi.org/10.1128/MCB.11.1.55
  27. Fillinger S, Chaveroche MK, van Dijck P, de Vries R, Ruijter G, Thevelein J, d’Enfert C. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 2001;147(Pt 7):1851-62. https://doi.org/10.1099/00221287-147-7-1851
  28. Thau N, Monod M, Crestani B, Rolland C, Tronchin G, Latge JP, Paris S. Rodletless mutants of Aspergillus fumigatus. Infect Immun 1994;62;4380-8.
  29. Kim HS, Han KY, Kim KJ, Han DM, Jahng KY, Chae KS. The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol 2002;37:72-80. https://doi.org/10.1016/S1087-1845(02)00029-4
  30. Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, et al. The VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 2008;320:1504-6. https://doi.org/10.1126/science.1155888
  31. Bok JW, Keller NP. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 2004;3:527-35. https://doi.org/10.1128/EC.3.2.527-535.2004
  32. Wieser J, Lee BN, Fondon JW 3rd, Adams TH. Genetic requirements for initiating asexual development in Aspergillus nidulans. Curr Genet 1994;27:62-9. https://doi.org/10.1007/BF00326580
  33. Wieser J, Adams TH. flbD encodes a Myb-like DNA binding protein that coordinates initiation of Aspergillus nidulans conidiophore development. Genes Dev 1995;9:491-502. https://doi.org/10.1101/gad.9.4.491
  34. Etxebeste O, Herrero-Garcia E, Araujo-Bazan L, Rodriguez-Urra AB, Garzia A, Ugalde U, Espeso EA. The bZIP-type transcription factor FlbB regulates distinct morphogenetic stages of colony formation in Aspergillus nidulans. Mol Microbiol 2009;73:775-89. https://doi.org/10.1111/j.1365-2958.2009.06804.x
  35. Etxebeste O, Ni M, Garzia A, Kwon NJ, Fischer R, Yu JH, Espeso EA, Ugalde U. Basic-zipper-type transcription factor FlbB controls asexual development in Aspergillus nidulans. Eukaryot Cell 2008;7:38-48. https://doi.org/10.1128/EC.00207-07
  36. Garzia A, Etxebeste O, Herrero-García E, Fischer R, Espeso EA, Ugalde U. Aspergillus nidulans FlbE is an upstream developmental activator of conidiation functionally associated with the putative transcription factor FlbB. Mol Microbiol 2009;71:172-84. https://doi.org/10.1111/j.1365-2958.2008.06520.x
  37. Garzia A, Etxebeste O, Herrero-García E, Ugalde U, Espeso EA. The concerted action of bZip and cMyb transcription factors FlbB and FlbD induces brlA expression and asexual development in Aspergillus nidulans. Mol Microbiol 2010;75:1314-24. https://doi.org/10.1111/j.1365-2958.2010.07063.x
  38. Kwon NJ, Garzia A, Espeso EA, Ugalde U, Yu JH. FlbC is a putative nuclear $C_2H_2$ transcription factor regulating development in Aspergillus nidulans. Mol Microbiol 2010;77:1203-19. https://doi.org/10.1111/j.1365-2958.2010.07282.x
  39. Kwon NJ, Shin KS, Yu JH. Characterization of the developmental regulator FlbE in Aspergillus fumigatus and Aspergillus nidulans. Fungal Genet Biol 2010;47:981-93. https://doi.org/10.1016/j.fgb.2010.08.009
  40. Xiao P, Shin KS, Wang T, Yu JH. Aspergillus fumigatus flbB encodes two basic leucine zipper domain (bZip) proteins required for proper asexual development and gliiotoxin production. Eukaryot Cell 2010;9:1711-23. https://doi.org/10.1128/EC.00198-10
  41. Lee BN, Adams TH. The Aspergillus nidulans fluG gene is required for production of an extracellular developmental signal and is related to prokaryotic glutamine synthetase I. Genes Dev 1994;8:641-51. https://doi.org/10.1101/gad.8.6.641

Cited by

  1. The small molecular mass antifungal protein of Penicillium chrysogenum - a mechanism of action oriented review vol.51, pp.6, 2011, https://doi.org/10.1002/jobm.201100041
  2. The social network: deciphering fungal language vol.9, pp.6, 2011, https://doi.org/10.1038/nrmicro2580
  3. Trichoderma: sensing the environment for survival and dispersal vol.158, pp.1, 2012, https://doi.org/10.1099/mic.0.052688-0
  4. Coordination of secondarymetabolism and development in fungi: the velvet familyof regulatory proteins vol.36, pp.1, 2012, https://doi.org/10.1111/j.1574-6976.2011.00285.x
  5. Antifungal activity of extracellular hydrolases produced by autolysing Aspergillus nidulans cultures vol.50, pp.5, 2012, https://doi.org/10.1007/s12275-012-2001-0
  6. A Conserved C-Terminal Domain of the Aspergillus fumigatus Developmental Regulator MedA Is Required for Nuclear Localization, Adhesion and Virulence vol.7, pp.11, 2012, https://doi.org/10.1371/journal.pone.0049959
  7. The Aspergillus nidulans MAPK Module AnSte11-Ste50-Ste7-Fus3 Controls Development and Secondary Metabolism vol.8, pp.7, 2012, https://doi.org/10.1371/journal.pgen.1002816
  8. vol.86, pp.4, 2012, https://doi.org/10.1111/mmi.12032
  9. vol.2013, pp.2314-6168, 2013, https://doi.org/10.1155/2013/832521
  10. vol.41, pp.3, 2013, https://doi.org/10.5941/MYCO.2013.41.3.145
  11. Concentration on Activation of Sexual Development in Aspergillus nidulans vol.41, pp.3, 2013, https://doi.org/10.4489/KJM.2013.41.3.192
  12. Identification of Metabolic Pathways Influenced by the G-Protein Coupled Receptors GprB and GprD in Aspergillus nidulans vol.8, pp.5, 2013, https://doi.org/10.1371/journal.pone.0062088
  13. Gβ-Like CpcB Plays a Crucial Role for Growth and Development of Aspergillus nidulans and Aspergillus fumigatus vol.8, pp.7, 2013, https://doi.org/10.1371/journal.pone.0070355
  14. AbaA Regulates Conidiogenesis in the Ascomycete Fungus Fusarium graminearum vol.8, pp.9, 2013, https://doi.org/10.1371/journal.pone.0072915
  15. X-ray microfluorescence (μXRF) imaging of Aspergillus nidulans cell wall mutants reveals biochemical changes due to gene deletions vol.406, pp.12, 2014, https://doi.org/10.1007/s00216-014-7726-7
  16. The WOPR Domain Protein OsaA Orchestrates Development in Aspergillus nidulans vol.10, pp.9, 2015, https://doi.org/10.1371/journal.pone.0137554
  17. Transcription Factor SomA Is Required for Adhesion, Development and Virulence of the Human Pathogen Aspergillus fumigatus vol.11, pp.11, 2015, https://doi.org/10.1371/journal.ppat.1005205
  18. Isolation and Characterization of Two Methyltransferase Genes, AfuvipB and AfuvipC in Aspergillus fumigatus vol.43, pp.1, 2015, https://doi.org/10.4489/KJM.2015.43.1.33
  19. vol.99, pp.1, 2015, https://doi.org/10.1111/mmi.13211
  20. RNA-Seq Reveals OTA-Related Gene Transcriptional Changes in Aspergillus carbonarius vol.11, pp.1, 2016, https://doi.org/10.1371/journal.pone.0147089
  21. The DenA/DEN1 Interacting Phosphatase DipA Controls Septa Positioning and Phosphorylation-Dependent Stability of Cytoplasmatic DenA/DEN1 during Fungal Development vol.12, pp.3, 2016, https://doi.org/10.1371/journal.pgen.1005949
  22. SCF Ubiquitin Ligase F-box Protein Fbx15 Controls Nuclear Co-repressor Localization, Stress Response and Virulence of the Human Pathogen Aspergillus fumigatus vol.12, pp.9, 2016, https://doi.org/10.1371/journal.ppat.1005899
  23. Transcriptional Control of Drug Resistance, Virulence and Immune System Evasion in Pathogenic Fungi: A Cross-Species Comparison vol.6, pp.2235-2988, 2016, https://doi.org/10.3389/fcimb.2016.00131
  24. vol.105, pp.6, 2017, https://doi.org/10.1111/mmi.13744
  25. The role of VosA/VelB-activated developmental gene vadA in Aspergillus nidulans vol.12, pp.5, 2017, https://doi.org/10.1371/journal.pone.0177099
  26. De novo transcriptome sequencing of marine-derived Aspergillus glaucus and comparative analysis of metabolic and developmental variations in response to salt stress vol.39, pp.3, 2017, https://doi.org/10.1007/s13258-016-0497-0
  27. FlbD, a Myb Transcription Factor of Aspergillus nidulans, Is Uniquely Involved in both Asexual and Sexual Differentiation vol.11, pp.9, 2012, https://doi.org/10.1128/EC.00101-12
  28. The Putative Guanine Nucleotide Exchange Factor RicA Mediates Upstream Signaling for Growth and Development in Aspergillus vol.11, pp.11, 2012, https://doi.org/10.1128/EC.00255-12
  29. Reduces Conidiation and Promotes Production of Sclerotia but Does Not Abolish Aflatoxin Biosynthesis vol.78, pp.21, 2012, https://doi.org/10.1128/AEM.01241-12
  30. WetA Is Required for Conidiogenesis and Conidium Maturation in the Ascomycete Fungus Fusarium graminearum vol.13, pp.1, 2014, https://doi.org/10.1128/EC.00220-13
  31. Functional Analysis of Sterol Transporter Orthologues in the Filamentous Fungus Aspergillus nidulans vol.14, pp.9, 2015, https://doi.org/10.1128/EC.00027-15
  32. Velvet domain protein VosA represses the zinc cluster transcription factor SclB regulatory network for Aspergillus nidulans asexual development, oxidative stress response and secondary metabolism vol.14, pp.7, 2018, https://doi.org/10.1371/journal.pgen.1007511
  33. vol.197, pp.1, 2014, https://doi.org/10.1534/genetics.114.161430
  34. species vol.10, pp.2, 2016, https://doi.org/10.1111/1751-7915.12367
  35. CARS spectroscopy of Aspergillus nidulans spores vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-018-37978-6