DOI QR코드

DOI QR Code

Environmental Factors and Bioremediation of Xenobiotics Using White Rot Fungi

  • Magan, Naresh (Applied Mycology Group, Cranfield Health, Cranfield University) ;
  • Fragoeiro, Silvia (Applied Mycology Group, Cranfield Health, Cranfield University) ;
  • Bastos, Catarina (Applied Mycology Group, Cranfield Health, Cranfield University)
  • Received : 2010.10.12
  • Accepted : 2010.11.24
  • Published : 2010.12.31

Abstract

This review provides background information on the importance of bioremediation approaches. It describes the roles of fungi, specifically white rot fungi, and their extracellular enzymes, laccases, ligninases, and peroxidises, in the degradation of xenobiotic compounds such as single and mixtures of pesticides. We discuss the importance of abiotic factors such as water potential, temperature, and pH stress when considering an environmental screening approach, and examples are provided of the differential effect of white rot fungi on the degradation of single and mixtures of pesticides using fungi such as Trametes versicolor and Phanerochaete chrysosporium. We also explore the formulation and delivery of fungal bioremedial inoculants to terrestrial ecosystems as well as the use of spent mushroom compost as an approach. Future areas for research and potential exploitation of new techniques are also considered.

Keywords

References

  1. Ashman MR, Puri G. Essential soil science: a clear and concise introduction to soil science. Oxford: Blackwell Science Ltd.; 2002.
  2. Han MJ, Choi HT, Song HG. Degradation of phenanthrene by Trametes versicolor and its laccase. J Microbiol 2004;42:94-8.
  3. Khadrani A, Siegle-Murandi F, Steinman R, Vrousami T. Degradation of three phenylurea herbicides (chlortorulon, isoproturon and diuron) by micromycetes isolated from soil. Chemosphere 1999;38:3041-50. https://doi.org/10.1016/S0045-6535(98)00510-4
  4. Lamar RT, Evans JW, Glaser JA. Solid-phase treatment of an pentachlorophenol-contaminated soil using lignin-degrading fungi. Environ Sci Technol 1993;27:2566-71. https://doi.org/10.1021/es00048a039
  5. Gavrilescu M. Fate of pesticides in the environment and its bioremediation. Eng Life Sci 2005;5:497-526. https://doi.org/10.1002/elsc.200520098
  6. Jackson MM, Hou LH, Banerjee HN, Sridhar R, Dutta SK. Disappearance of 2,4-dinitrotoluene and 2-amino,4,6-dinitrotoluene by Phanerochaete chrysosporium under non-ligninolytic conditions. Bull Environ Contam Toxicol 1999;62:390-6. https://doi.org/10.1007/s001289900887
  7. Reddy C, Mathew Z. Bioremediation potential of white rot fungi. In: Gadd GM, editor. Fungi in bioremediation. Cambridge: Cambridge University Press; 2001. p. 52-78.
  8. Rhine ED, Fuhrmann JJ, Radosevich M. Microbial community responses to atrazine exposure and nutrient availability: linking degradation capacity to community structure. Microb Ecol 2003;46:145-60. https://doi.org/10.1007/s00248-002-1048-6
  9. Gadd GM. Fungi in bioremediation. Cambridge: Cambridge University Press; 2001.
  10. Radtke C, Cook WS, Anderson A. Factors affecting antagonism of the growth of Phanerochaete chrysosporium by bacteria isolated from soils. Appl Microbiol Biotechnol 1994;41:274-80. https://doi.org/10.1007/BF00186972
  11. Rodriguez Couto S, Toca Herrera JL. Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 2006;24:500-13. https://doi.org/10.1016/j.biotechadv.2006.04.003
  12. Armstrong DE, Chesters G, Harris RF. Atrazine hydrolysis in soil. Soil Sci Soc Am J 1967;31:61-6. https://doi.org/10.2136/sssaj1967.03615995003100010019x
  13. Haggblom MM. Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 1992;9:29-71.
  14. Yadav JS, Loper JC. Cytochrome P450 oxidoreductase gene and its differentially terminated cDNAs from the white rot fungus Phanerochaete chrysosporium. Curr Genet 2000;37:65-73. https://doi.org/10.1007/s002940050010
  15. Margesin R, Zimmerbauer A, Schinner F. Monitoring of bioremediation by soil biological activities. Chemosphere 2000;40:339-46. https://doi.org/10.1016/S0045-6535(99)00218-0
  16. McFarland MJ, Salladay D, Ash D, Baiden E. Composting treatment of alachlor impacted soil amended with the white rot fungus: Phanerochaete chrysosporium. Hazard Waste Hazard Mater 1996;13:363-73. https://doi.org/10.1089/hwm.1996.13.363
  17. Ghani A, Wardle DA, Rahman A, Lauren DR. Interactions between $^{14}C$-labelled atrazine and the soil microbial biomass in relation to herbicide degradation. Biol Fertil Soils 1996;21:17-22. https://doi.org/10.1007/BF00335988
  18. Balba MT, Al-Awadhi N, Al-Daher, R. Bioremediation of oilcontaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Methods 1998; 32:155-64. https://doi.org/10.1016/S0167-7012(98)00020-7
  19. Houot S, Barriuso E, Bergheaud V. Modifications to atrazine degradation pathways in a loamy soil after addition of organic amendments. Soil Biol Biochem 1998;30:2147-57. https://doi.org/10.1016/S0038-0717(98)00098-4
  20. Zhang JL, Qiao CL. Novel approaches for remediation of pesticide pollutants. Int J Environ Pollut 2002;18:423-33 https://doi.org/10.1504/IJEP.2002.002337
  21. Novotny C, Rawal B, Bhatt M, Patel M, Sazek V, Molitoris H. Screening of fungal strains for remediation of water and soil contaminated with synthetic dyes. In: Šašek V, Glaser JA, Baveye P, editors. The utilization of bioremediation to reduce soil contamination: problems and solutions. Dordrecht: Kluwer Academis Publishers; 2003. p. 143-9.
  22. Fragoeiro S. Use of fungi in bioremediation of pesticides [dissertation]. Bedford: Cranfield University; 2005.
  23. Magan N. Ecophysiology: impact of environment on growth, synthesis of compatible solutes and enzyme production. In: Boddy L, Frankland JC, van West P, editors. Ecology of saprotrophic Basidiomycetes. Amsterdam: Elsevier Ltd.;2007.
  24. Sasek V, Glaser JA, Baveye P. The utilization of bioremediation to reduce soil contamination: problems and solutions. Dordrecht: Kluwer Academic Publishers; 2003.
  25. Canet R, Birnstingl JG, Malcolm DG, Lopez-Real JM, Beck AJ. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil. Bioresour Technol 2001;76:113-7. https://doi.org/10.1016/S0960-8524(00)00093-6
  26. Trejo-Hernandez MR, Lopez-Munguia A, Ramirez RQ. Residual compost of Agaricus bisporus as a source of crude laccase for enzymic oxidation of phenolic compounds. Process Biochem 2001;36:635-9. https://doi.org/10.1016/S0032-9592(00)00257-0
  27. Schmidt KR, Chand S, Gostomski PA, Boyd-Wilson KS, Ford C, Walter M. Fungal inoculum properties and its effect on growth and enzyme activity of Trametes versicolor in soil. Biotechnol Prog 2005;21:377-85. https://doi.org/10.1021/bp049675m
  28. Fragoeiro S, Magan N. Impact of Trametes versicolor and Phanerochaete crysosporium on differential breakdown of pesticide mixtures in soil microcosms at two water potentials and associated respiration and enzyme activity. Int Biodeterior Biodegrad 2008;62:376-83. https://doi.org/10.1016/j.ibiod.2008.03.003
  29. Baldrian P. Increase of laccase activity during interspecific interactions of white-rot fungi. FEMS Microbiol Ecol 2004;50:245-53. https://doi.org/10.1016/j.femsec.2004.07.005
  30. Pointing SB. Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 2001;57:20-33. https://doi.org/10.1007/s002530100745
  31. Fragoeiro S, Magan N. Enzymatic activity, osmotic stress and degradation of pesticide mixtures in soil extract liquid broth inoculated with Phanerochaete chrysosporium and Trametes versicolor. Environ Microbiol 2005;7:348-55. https://doi.org/10.1111/j.1462-2920.2005.00699.x
  32. Novotny C, Svobodova K, Erbanova P, Cajthaml T, Kasinath A, Lang E, Sasek V. Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 2004;36:1545-51. https://doi.org/10.1016/j.soilbio.2004.07.019
  33. Paszczynski A, Crawford R. Recent advances in the use of fungi in environmental remediation and biotechnology. Soil Biochem 2000;10:379-422.
  34. Mswaka AY, Magan N. Temperature and water potential relations of tropical Trametes and other wood-decay fungi from the indigenous forests of Zimbabwe. Mycol Res 1999;103:1309-17. https://doi.org/10.1017/S0953756298008491
  35. Ryan T, Bumpus J. Biodegradation of 2,4,5-trichlorophenoxyacteic acid in liquid culture and in soil by the white rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 1989;31:302-7.
  36. Lang E, Kleeberg I, Zadrazil F. Extractable organic carbon and counts of bacteria near the lignocellulose-soil surface interface during the interaction of soil microbiota and white rot fungi. Bioresour Technol 2000;75:57-65. https://doi.org/10.1016/S0960-8524(00)00031-6
  37. Sasek V. Why mycoremediations have not yet come into practice. In: Sasek V, Glaser JA, Baveye P, editors. The utilization of bioremediation to reduce soil contamination: problems and solutions. Dordrecht: Kluwer Academic Publishers;2003. p. 247-76.
  38. Tuor U, Winterhalter K, Fiechter A. Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J Biotechnol 1995;41:1-17. https://doi.org/10.1016/0168-1656(95)00042-O
  39. Valli K, Wariish H, Gold MH. Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignin degrading basidiomycete Phanerochaete chrysosporium. J Bacteriol 1992;174:2131-7. https://doi.org/10.1128/jb.174.7.2131-2137.1992
  40. Hestbjerg H, Willumsen PA, Christensen M, Andersen O, Jacobsen CS. Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production. Environ Toxicol Chem 2003;22:692-8. https://doi.org/10.1002/etc.5620220402
  41. Chivukula M, Renganathan V. Phenolic azo-dye oxidation by laccase from Pycularia oryzae. Appl Environ Microbiol 1995;61:4374-7.
  42. Esposito E, Paulillo SM, Manfio GP. Biodegradation of the herbicide diuron in soil by indigenous actinomycetes. Chemosphere 1998;37:541-8. https://doi.org/10.1016/S0045-6535(98)00069-1
  43. Demir G. Degradation of toluene and benzene by Trametes versicolor. J Environ Biol 2004;25:19-25.
  44. Barr DP, Aust SD. Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 1994;28:A78-87. https://doi.org/10.1021/es00051a002
  45. Bending GD, Friloux M, Walker A. Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 2002;212:59-63. https://doi.org/10.1111/j.1574-6968.2002.tb11245.x
  46. Mougin C, Pericaud C, Malosse C, Laugero C, Asther M. Biotransformation of the insecticide lindane by the white rot basidiomycete Phanerochaete chrysosporium. Pestic Sci 1996;47:51-9. https://doi.org/10.1002/(SICI)1096-9063(199605)47:1<51::AID-PS391>3.0.CO;2-V
  47. Yadav JS, Doddapaneni H, Subramanian V. P450ome of the white rot fungus Phanerochaete chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters. Biochem Soc Trans 2006;34:1165-9. https://doi.org/10.1042/BST0341165
  48. Youn HD, Hah YC, Kang SO. Role of laccase in lignin degradation by white rot fungi. FEMS Microbiol Lett 1995; 132:183-8. https://doi.org/10.1111/j.1574-6968.1995.tb07831.x
  49. Magan N. Fungi in extreme environments. In: Wicklow DT, Soderstrom B, editors. The Mycota, Vol. 4. Environmental and microbial relationships. Berlin: Springer-Verlag; 1997. p.99-113.
  50. Margesin R, Walder G, Schinner F. The impact of hydrocarbon remediation (diesel oil and polycyclic aromatic hydrocarbons) on enzyme activities and microbial properties of soil. Acta Biotechnol 2000;20:313-33. https://doi.org/10.1002/abio.370200312
  51. Tekere M, Mswaka AY, Zvauya R, Read JS. Growth, dye degradation and ligninolytic activity studies on Zimbabwean white rot fungi. Enzyme Microb Technol 2001;28:420-6. https://doi.org/10.1016/S0141-0229(00)00343-4
  52. Lang E, Nerud F, Zadrazil F. Production of ligninolytic enzymes by Pleurotus sp. and Dichomitus squalens in soil and lignocellulose substrate as influence by soil microorganisms. FEMS Microbiol Lett 1998;167:239-44. https://doi.org/10.1111/j.1574-6968.1998.tb13234.x
  53. Morgan P, Lewis ST, Watkinson RJ. Comparison of abilities of white-rot fungi to mineralize selected xenobiotic compounds. Appl Microbiol Biotechnol 1991;34:693-6. https://doi.org/10.1007/BF00167925
  54. Meysami P, Baheri H. Pre-screening of fungi and bulking agents for contaminated soil bioremediation. Adv Environ Res 2003;7:881-7. https://doi.org/10.1016/S1093-0191(02)00083-7
  55. Novotny C, Erbanova P, Sasek V, Kubatova A, Cajthaml T, Lang E, Krahl J, Zadrazil F. Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi. Biodegradation 1999;10:159-68. https://doi.org/10.1023/A:1008324111558
  56. Boyle CD. Development of a practical method for inducing white rot fungi to grow into and degrade organopollutants in soil. Can J Microbiol 1995;41:345-53. https://doi.org/10.1139/m95-047
  57. Moredo N, Lorenzo M, Dominguez A, Moldes D, Cameselle C, Sanroman A. Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor. World J Microbiol Biotechnol 2003;19:665-9. https://doi.org/10.1023/A:1025198917474
  58. Harvey P, Thurston C. The biochemistry of ligninolytic fungi. In: Gadd GM, editor. Fungi in bioremediation. Cambridge: Cambridge University Press; 2001. p. 27-51.
  59. Singleton I. Fungal remediation of soils contaminated with persistent organic pollutants. In: Gadd GM, editor. Fungi in bioremediation. Cambridge: Cambridge University Press; 2001. p. 79-96.
  60. Semple KT, Reid BJ, Fermor TR. Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ Pollut 2001;112:269-83. https://doi.org/10.1016/S0269-7491(00)00099-3
  61. Law WM, Lau WN, Lo KL, Wai LM, Chiu SW. Removal of biocide pentachlorophenol in water system by the spent mushroom compost of Pleurotus pulmonarius. Chemosphere 2003;52:1531-7. https://doi.org/10.1016/S0045-6535(03)00492-2
  62. Chiu SW, Law SC, Ching ML, Cheung KW, Chen MJ. Themes for mushroom exploitation in the 21st century: sustainability, waste management, and conservation. J Gen Appl Microbiol 2000;46:269-82. https://doi.org/10.2323/jgam.46.269
  63. Ball AS, Jackson AM. The recovery of lignocellulose-degrading enzymes from spent mushroom compost. Bioresour Technol 1995;54:311-4. https://doi.org/10.1016/0960-8524(95)00153-0
  64. Singh A, Abdullah N, Vikineswary S. Optimization of extraction of bulk enzymes from spent mushroom compost. J Chem Technol Biotechnol 2003;78:743-52. https://doi.org/10.1002/jctb.852
  65. Kuo W, Regan R. Removal of pesticides from rinsates by adsorption using agricultural residues as medium. J Sci Health 1999;B34:431-47.
  66. Lau KL, Tsang YY, Chiu SW. Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 2003;52:1539-46. https://doi.org/10.1016/S0045-6535(03)00493-4
  67. Bastos AC, Magan N. Trametes versicolor: potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. Int Biodeterior Biodegrad 2009;63:389-94. https://doi.org/10.1016/j.ibiod.2008.09.010

Cited by

  1. Identificación del agente causal de la pudrición blanca en Morelos, México vol.15, pp.2, 2013, https://doi.org/10.15446/rev.colomb.biote.v15n2.41744
  2. strains isolated from agricultural soils vol.49, pp.10, 2014, https://doi.org/10.1080/03601234.2014.929860
  3. Response of indigenously developed bacterial consortia in progressive degradation of polyvinyl chloride vol.253, pp.4, 2016, https://doi.org/10.1007/s00709-015-0855-9
  4. State of Bioremediation in Bangladesh: Current Concept and Implementation Compared to Global Approaches vol.45, pp.1, 2017, https://doi.org/10.1002/clen.201500622
  5. Oil degradation by basidiomycetes in soil and peat at low temperatures vol.52, pp.6, 2016, https://doi.org/10.1134/S0003683816060119
  6. Potential microbial applications of co-cultures involving ligninolytic fungi in the bioremediation of recalcitrant xenobiotic compounds vol.14, pp.8, 2017, https://doi.org/10.1007/s13762-017-1269-3
  7. Characterization of the biodegradation, bioremediation and detoxification capacity of a bacterial consortium able to degrade the fungicide thiabendazole vol.28, pp.5-6, 2017, https://doi.org/10.1007/s10532-017-9803-z
  8. Laccases from Marine Organisms and Their Applications in the Biodegradation of Toxic and Environmental Pollutants: a Review pp.1559-0291, 2018, https://doi.org/10.1007/s12010-018-2829-9
  9. Degradation kinetics of 2,4-dichlorophenoxyacetic and atrazine by Trametes versicolor (L.:Fr.) Pilt vol.17, pp.52, 2018, https://doi.org/10.5897/AJB2018.16426