• 제목/요약/키워드: Genome similarity

검색결과 204건 처리시간 0.023초

마루자주새우[Crangon hakodatei (Rathbun, 1902)]의 전장 미토콘드리아 유전체에 대한 분석 연구 (Complete Mitochondrial Genome of Crangon hakodatei (Rathbun, 1902) (Crustacea: Decapoda: Crangonidae))

  • 김경률;김현우
    • 한국수산과학회지
    • /
    • 제49권6호
    • /
    • pp.867-874
    • /
    • 2016
  • Although shrimps belonging to family Crangonidae are known to be genetically divergent and ecologically important among the various benthos, any of their mitochondrial genome has not been reported yet. We here determined the complete mitochondrial genome sequence of Crangon hakodatei (Rathbun, 1902), which was collected from East China Sea ($124^{\circ}E$ and $34.5^{\circ}N$). Total mitochondrial genome length of C. hakodatei was 16,060 bp, in which 13 proteins, 2 ribosomal RNAs, 22 transfer RNAs and a putative control region were encoded. Secondary structure prediction analysis showed that twenty tRNA genes exhibit the conserved structure but two genes, $tRNA^{Cys}$ and $tRNA^{Ser}$ (AGN), lack T and D arm, respectively. Based on the sequence similarity of the COI region from the currently reported five species belonging to genus Crangonidae, C. hakodatei was most closely related to Crangon crangon. Phylogenetic analysis of full COXI genes belonging to infraorder Caridea showed that only crangonid shrimps were clustered together with those of Dendrobranchiata. Gene order were well conserved from Penaeoidea to Caridea but $tRNA^{Pro}$ and $tRNA^{Thr}$ in Palaemonid shrimp were flipped each other by the recombination. Further study about mitochondrial genome sequences of shrimps belonging to Crangonidae should be made to know better about their evolutional relationships with other those in infraorder Caridea.

A genome-wide approach to the systematic and comprehensive analysis of LIM gene family in sorghum (Sorghum bicolor L.)

  • Md. Abdur Rauf Sarkar;Salim Sarkar;Md Shohel Ul Islam;Fatema Tuz Zohra;Shaikh Mizanur Rahman
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.36.1-36.19
    • /
    • 2023
  • The LIM domain-containing proteins are dominantly found in plants and play a significant role in various biological processes such as gene transcription as well as actin cytoskeletal organization. Nevertheless, genome-wide identification as well as functional analysis of the LIM gene family have not yet been reported in the economically important plant sorghum (Sorghum bicolor L.). Therefore, we conducted an in silico identification and characterization of LIM genes in S. bicolor genome using integrated bioinformatics approaches. Based on phylogenetic tree analysis and conserved domain, we identified five LIM genes in S. bicolor (SbLIM) genome corresponding to Arabidopsis LIM (AtLIM) genes. The conserved domain, motif as well as gene structure analyses of the SbLIM gene family showed the similarity within the SbLIM and AtLIM members. The gene ontology (GO) enrichment study revealed that the candidate LIM genes are directly involved in cytoskeletal organization and various other important biological as well as molecular pathways. Some important families of regulating transcription factors such as ERF, MYB, WRKY, NAC, bZIP, C2H2, Dof, and G2-like were detected by analyzing their interaction network with identified SbLIM genes. The cis-acting regulatory elements related to predicted SbLIM genes were identified as responsive to light, hormones, stress, and other functions. The present study will provide valuable useful information about LIM genes in sorghum which would pave the way for the future study of functional pathways of candidate SbLIM genes as well as their regulatory factors in wet-lab experiments.

CysQ of $Cryptosporidium$ $parvum$, a Protozoa, May Have Been Acquired from Bacteria by Horizontal Gene Transfer

  • Lee, Ji-Young;Kim, Sang-Soo
    • Genomics & Informatics
    • /
    • 제10권1호
    • /
    • pp.9-15
    • /
    • 2012
  • Horizontal gene transfer (HGT) is the movement of genetic material between kingdoms and is considered to play a positive role in adaptation. $Cryptosporidium$ $parvum$ is a parasitic protozoan that causes an infectious disease. Its genome sequencing reported 14 bacteria-like proteins in the nuclear genome. Among them, cgd2_1810, which has been annotated as CysQ, a sulfite synthesis pathway protein, is listed as one of the candidates of genes horizontally transferred from bacterial origin. In this report, we examined this issue using phylogenetic analysis. Our BLAST search showed that $C.$ $parvum$ CysQ protein had the highest similarity with that of proteobacteria. Analysis with NCBI's Conserved Domain Tree showed phylogenetic incongruence, in that $C.$ $parvum$ CysQ protein was located within a branch of proteobacteria in the cd01638 domain, a bacterial member of the inositol monophosphatase family. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, the sulfate assimilation pathway, where CysQ plays an important role, is well conserved in most eukaryotes as well as prokaryotes. However, the Apicomplexa, including $C.$ $parvum$, largely lack orthologous genes of the pathway, suggesting its loss in those protozoan lineages. Therefore, we conclude that $C.$ $parvum$ regained cysQ from proteobacteria by HGT, although its functional role is elusive.

Inference of Aspergillus fumigatus Pathways by Computational Genome Analysis: Tricarboxylic Acid Cycle (TCA) and Glyoxylate Shunt

  • Do, Jin-Hwan;Anderson, Michael-J.;Denning, David-W.;Erich, Bornberg-Bauer
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.74-80
    • /
    • 2004
  • Aspergillus fumigatus is one of the most common fungi in the human environment, both in-doors and out-doors. It is the main causative agent of invasive aspergillosis, a life-threatening mycosis among immunocompromised patients. The genome has been sequenced by an international consortium, including the Wellcome Trust Sanger Institute (U.K.) and The Institute for Genomic Research (TIGR, U.S.A.), and a ten times whole genome shotgun sequence assembly has been made publicly available. In this study, we identified tricarboxylic acid (TCA) cycle enzymes of A. fumigatus by comparative analysis with four other fungal species. The open reading frames showed high amino acid sequence similarity with the other fungal citric acid enzymes and well-conserved functional domains. All genes present in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans, and Neurospora crassa were also found in A. fumigatus. In addition, we identified four A. fumigatus genes coding for enzymes in the glyoxylate shunt, which may be required for fungal virulence. The architecture of multi-gene encoded enzymes, such as isocitrate dehydrogenase, 2-ketoglutarate, succinyl-CoA synthetase, and succinate dehydrogenase was well conserved in A. fumigatus. Furthermore, our results show that genes of A. fumigatus can be detected reliably using GlimmerM.

Calibrating Thresholds to Improve the Detection Accuracy of Putative Transcription Factor Binding Sites

  • Kim, Young-Jin;Ryu, Gil-Mi;Park, Chan;Kim, Kyu-Won;Oh, Berm-Seok;Kim, Young-Youl;Gu, Man-Bok
    • Genomics & Informatics
    • /
    • 제5권4호
    • /
    • pp.143-151
    • /
    • 2007
  • To understand the mechanism of transcriptional regulation, it is essential to detect promoters and regulatory elements. Various kinds of methods have been introduced to improve the prediction accuracy of regulatory elements. Since there are few experimentally validated regulatory elements, previous studies have used criteria based solely on the level of scores over background sequences. However, selecting the detection criteria for different prediction methods is not feasible. Here, we studied the calibration of thresholds to improve regulatory element prediction. We predicted a regulatory element using MATCH, which is a powerful tool for transcription factor binding site (TFBS) detection. To increase the prediction accuracy, we used a regulatory potential (RP) score measuring the similarity of patterns in alignments to those in known regulatory regions. Next, we calibrated the thresholds to find relevant scores, increasing the true positives while decreasing possible false positives. By applying various thresholds, we compared predicted regulatory elements with validated regulatory elements from the Open Regulatory Annotation (ORegAnno) database. The predicted regulators by the selected threshold were validated through enrichment analysis of muscle-specific gene sets from the Tissue-Specific Transcripts and Genes (T-STAG) database. We found 14 known muscle-specific regulators with a less than a 5% false discovery rate (FDR) in a single TFBS analysis, as well as known transcription factor combinations in our combinatorial TFBS analysis.

누에 미토콘드리아 유전체의 제한효소 지도작성, 클로닝 및 염기서열 분석 (Sequence Analysis, Molecular Cloning and Restriction Mapping of Mitochondreal Genome of Domesticated Silkworm, Bombyx mori)

  • 이진성;성승현;김용성;서동상
    • 한국잠사곤충학회지
    • /
    • 제42권1호
    • /
    • pp.14-23
    • /
    • 2000
  • The mitochondrial genome of domesticated silkworm (Bombyx mori) was mapped with five restriction endonucleases (BamHI, EcoRI, HindIII, PstI and XbaI), the entire genome was cloned with HindIII and EcoRI. From the end sequencing results of 5$^1$and 3$^1$region for full genome set of eleven mitochondrial clones, the seven mitochondrial genes (NADH dehydrogenase 6, ATPase 6, ATPase 8, tRN $A^{Lys}$, tRN $A^{Asp}$, tRN $A^{Thr}$ and tRN $A^{Phe}$ of mori were identified on the basis of their nucleotide sequence homology. The nucleotide composition of NADH dehydrogenase 6 was heavily biased towards adenine and thymine, which accounted for 87.76%. On basis of the sequence similarity with published tRNA genes from six insect species, the tRN $A^{Lys}$, tRN $A^{Asp}$ and tRN $A^{Thr}$ were showed stable canonical clover-leaf tRNA structures with acceptible anticodons. However, both the DHU and T$\psi$C arms of tRN $A^{Phe}$ could not form any stable stem-loop structure. The two overlapping gene pairs (tRN $A^{Lys}$ -tRN $A^{ASP}$ and ATPase8-ATPase6) were found from our sequencing results. The genes are encoded on the same strad. ATPase8 and ATPase6 overlaps (ATGATAA) which are a single example of overlapping events between abutted protein-coding genes are common, and there is evidence that the two proteins are transcribed from a single bicistronic message by initiation at 5$^1$terminal start site for ATPase8 and at an internal start site for ATPase6. Ultimately, this result will provide assistance in designing oligo-nucleotides for PCR amplification, and sequencing the specific mitochondrial genes for phylogenetics of geographic races, genetically improved silkworm strains and wild silkworm (mandarina) which is estimated as ancestal of domesticated silkworm.sticated silkworm.

  • PDF

KBUD: The Korea Brain UniGene Database

  • Jeon, Yeo-Jin;Oh, Jung-Hwa;Yang, Jin-Ok;Kim, Nam-Soon
    • Genomics & Informatics
    • /
    • 제3권3호
    • /
    • pp.86-93
    • /
    • 2005
  • Human brain EST data provide important clues for our understanding of the molecular biology associated with the function of the normal brain and the molecular pathophysiology with brain disorders. To systematically and efficiently study the function and disorders of the human brain, 45,773 human brain ESTs were collected from 27 human brain cDNA libraries, which were constructed from normal brains and brain disorders such as brain tumors, Parkinson's disease (PO) and epilepsy. An analysis of 45,773 human brain ESTs using our EST analysis pipeline resulted in 38,396 high-quality ESTs and 35,906 ESTs, which were coalesced into 8,246 unique gene clusters, showing a significant similarity to known genes in the human RefSeq, human mRNAs and UniGene database. In addition, among 8,246 gene clusters, 4,287 genes ($52\%$) were found to contain full-length cONA clones. To facilitate the extraction of useful information in collected these human brain ESTs, we developed a user-friendly interface system, the Korea Brain Unigene Database (KBUD). The KBUD web interface allows access to our human brain data through three major search modes, the BioCarta pathway, keywords and BLAST searches. Each result when viewed in KBUD offers comprehensive information concerning the analyzed human brain ESTs provided by our data as well as data linked to various other publiC databases. The user-friendly developed KBUD, the first world-wide web interface for human brain EST data with ESTs of human brain disorders as well as normal brains, will be a helpful system for developing a better understanding of the underlying mechanisms of the normal brain well as brain disorders. The KBUD system is freely accessible at http://kugi.kribb.re.kr/KU/cgi -bin/brain. pI.

Computational Approaches to Gene Prediction

  • Do Jin-Hwan;Choi Dong-Kug
    • Journal of Microbiology
    • /
    • 제44권2호
    • /
    • pp.137-144
    • /
    • 2006
  • The problems associated with gene identification and the prediction of gene structure in DNA sequences have been the focus of increased attention over the past few years with the recent acquisition by large-scale sequencing projects of an immense amount of genome data. A variety of prediction programs have been developed in order to address these problems. This paper presents a review of the computational approaches and gene-finders used commonly for gene prediction in eukaryotic genomes. Two approaches, in general, have been adopted for this purpose: similarity-based and ab initio techniques. The information gleaned from these methods is then combined via a variety of algorithms, including Dynamic Programming (DP) or the Hidden Markov Model (HMM), and then used for gene prediction from the genomic sequences.

Nitrosomonadales 목의 핵심유전체(core genome)와 범유전체(pan-genome)의 비교유전체학적 연구 (Comparative analysis of core and pan-genomes of order Nitrosomonadales)

  • 이진환;김경호
    • 미생물학회지
    • /
    • 제51권4호
    • /
    • pp.329-337
    • /
    • 2015
  • Nitrosomonadales 목에서 속하는 균주 중 현재 유전체 서열이 알려진 모든 유전체(N=10)를 이용하여 범유전체 및 핵심유전체 분석을 수행한 결과, 각각 9,808개와 908개 유전자클러스터를 포함하는 것을 확인하였다. Betaproteobacteria의 다른 목의 참조군들과 비교를 통하여 범유전체와 핵심유전체의 크기에 유전체의 수와 집단 내의 유전체들의 차이가 영향을 미치는 것을 확인하였다. Nitrosomonas 속과 Nitrosospira 속의 범유전체는 7,180개와 4,586개, 핵심유전체는 1,092개와 1,600로로 각각 측정되어 Nitrosospira 속의 동질성이 더 높은 것을 확인하였다. Nitrosomonadales 목의 범유전체와 핵심유전체의 크기에 Nitrosomonas 속이 대부분의 영향을 미치는 것을 확인하였다. COG 분석을 통하여 핵심유전체의 크기에는 J (translation, ribosomal structure and biogenesis) 범주가 가장 큰 비율(9.7-21.0%)을 차지하며, 유전체 사이의 유전적 거리가 먼 집단일수록 그 비율이 높아지는 것을 확인하였다. 범유전체의 크기에는 "-" (unclassified) 범주가 34-51%의 높은 비율을 차지하고 있을 정도로 큰 영향을 미치는 것을 확인하였다. 총 97개의 유전자 클러스터가 참조군에는 없고 Nitrosomonadales에만 존재하는 것을 확인하였다. 이들 클러스터들은 Nitrosomonadales을 특징 지우는 유전자들인 ammonia monooxygenase의 유전자인 amoA와 amoB와 그와 관련 있는 amoE와 amoD들을 포함하는 반면에 unclassified 유전자들도 상당량(16-45%)을 포함하고 있다. 이러한 유전자 클러스터는 Nitrosomonadales의 유전적 특이성을 밝히는 데 중요한 역할을 할 것이다.

Genetic Relationships of Lactuca spp. Revealed by RAPD, Inter-SSR, AFLP, and PCR-RFLP Analyses

  • Yang, Tae-Jin;Jang, Suk-Woo;Kim, Won-Bae
    • Journal of Crop Science and Biotechnology
    • /
    • 제10권1호
    • /
    • pp.27-32
    • /
    • 2007
  • RAPD, Inter-SSR, and AFLP markers were used to assess the genetic diversity of lettuce cultivars and the phylogenetic relationships in Lactuca spp. A total of 216 polymorphic bands from seven RAPD primers, four Inter-SSR primers, and five AFLP primer combinations were used to elucidate the genetic similarity among lettuce cultivars. Forty-four lettuce accessions were subdivided into discrete branches according to plant type: crisphead, butterhead, and stem type, with some exceptions. The leafy- and cos-type accessions were intermingled in other groups with no discrete branch indicating that these are more diverse than others. Three accessions, including the Korean cultivar 'Cheongchima', the Korean local landrace 'Jinjam', and the German cultivar 'Lolla Rossa' were classified as the most diverse accessions. Twenty bands were unique in specific cultivars. Among these, three were specific in a plant type; one in Korean leafy type, one in crisphead type, and one in cos type lettuce. In the phylogenetic analysis among Lactuca species, L. saligna, L. serriola, and L. georgica clustered in a sister branch of the L. sativa complex. Two L. virosa accessions show the highest intra-specific relationships. L. perennis outlied from all the other Lactuca species at a genetic similarity of 0.53 and clustered with two Cichorium species, C. intybus and C. endivia, with genetic similarity of 0.67. The phylogenetic tree was supported by data from polymorphism of chloroplast genome which was revealed by PCR-RFLP.

  • PDF