DOI QR코드

DOI QR Code

Comparative analysis of core and pan-genomes of order Nitrosomonadales

Nitrosomonadales 목의 핵심유전체(core genome)와 범유전체(pan-genome)의 비교유전체학적 연구

  • Lee, Jinhwan (Aquaculture Division, National Institute of Fisheries Science) ;
  • Kim, Kyoung-Ho (Department of Microbiology, Pukyong National University)
  • Received : 2015.11.30
  • Accepted : 2015.12.14
  • Published : 2015.12.31

Abstract

All known genomes (N=10) in the order Nitrosomonadales were analyzed to contain 9,808 and 908 gene clusters in their pan-genome and core genome, respectively. Analyses with reference genomes belonging to other orders in Betaproteobacteria revealed that sizes of pan-genome and core genome were dependent on the number of genomes compared and the differences of genomes within a group. The sizes of pan-genomes of the genera Nitrosomonas and Nitrosospira were 7,180 and 4,586 and core genomes, 1,092 and 1,600, respectively, which implied that similarity of genomes in Nitrosospira were higher than Nitrosomonas. The genomes of Nitrosomonas contributed mostly to the size of the pan-genome and core genomes of Nitrosomonadales. COG analysis of gene clusters showed that the J (translation, ribosomal structure and biogenesis) category occupied the biggest proportions (9.7-21.0%) among COG categories in core genomes and its proportion increased in the group which genetic distances among members were high. The unclassified category (-) occupied very high proportions (34-51%) in pan-genomes. Ninety seven gene clusters existed only in Nitrosomonadales and not in reference genomes. The gene clusters contained ammonia monooxygenase (amoA and amoB) and -related genes (amoE and amoD) which were typical genes characterizing the order Nitrosomonadales while they contained significant amount (16-45%) of unclassified genes. Thus, these exclusively-conserved gene clusters might play an important role to reveal genetic specificity of the order Nitrosomonadales.

Nitrosomonadales 목에서 속하는 균주 중 현재 유전체 서열이 알려진 모든 유전체(N=10)를 이용하여 범유전체 및 핵심유전체 분석을 수행한 결과, 각각 9,808개와 908개 유전자클러스터를 포함하는 것을 확인하였다. Betaproteobacteria의 다른 목의 참조군들과 비교를 통하여 범유전체와 핵심유전체의 크기에 유전체의 수와 집단 내의 유전체들의 차이가 영향을 미치는 것을 확인하였다. Nitrosomonas 속과 Nitrosospira 속의 범유전체는 7,180개와 4,586개, 핵심유전체는 1,092개와 1,600로로 각각 측정되어 Nitrosospira 속의 동질성이 더 높은 것을 확인하였다. Nitrosomonadales 목의 범유전체와 핵심유전체의 크기에 Nitrosomonas 속이 대부분의 영향을 미치는 것을 확인하였다. COG 분석을 통하여 핵심유전체의 크기에는 J (translation, ribosomal structure and biogenesis) 범주가 가장 큰 비율(9.7-21.0%)을 차지하며, 유전체 사이의 유전적 거리가 먼 집단일수록 그 비율이 높아지는 것을 확인하였다. 범유전체의 크기에는 "-" (unclassified) 범주가 34-51%의 높은 비율을 차지하고 있을 정도로 큰 영향을 미치는 것을 확인하였다. 총 97개의 유전자 클러스터가 참조군에는 없고 Nitrosomonadales에만 존재하는 것을 확인하였다. 이들 클러스터들은 Nitrosomonadales을 특징 지우는 유전자들인 ammonia monooxygenase의 유전자인 amoA와 amoB와 그와 관련 있는 amoE와 amoD들을 포함하는 반면에 unclassified 유전자들도 상당량(16-45%)을 포함하고 있다. 이러한 유전자 클러스터는 Nitrosomonadales의 유전적 특이성을 밝히는 데 중요한 역할을 할 것이다.

Keywords

References

  1. Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., et al. 2004. UniProt: the Universal Protein knowledge base. Nucleic Acids Res. 32, D115-119. https://doi.org/10.1093/nar/gkh131
  2. Arp, D.J., Sayavedra-Soto, L.A., and Hommes, N.G. 2002. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Arch. Microbiol. 178, 250-255. https://doi.org/10.1007/s00203-002-0452-0
  3. Bollmann, A., Sedlacek, C.J., Norton, J., Laanbroek, H.J., Suwa, Y., Stein, L.Y., Klotz, M.G., Arp, D., Sayavedra-Soto, L., Lu, M., et al. 2013. Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations. Stand. Genomic Sci. 7, 469-482.
  4. Chain, P., Lamerdin, J., Larimer, F., Regala, W., Lao, V., Land, M., Hauser, L., Hooper, A., Klotz, M., Norton, J., et al. 2003. Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J. Bacteriol. 185, 2759-2773. https://doi.org/10.1128/JB.185.9.2759-2773.2003
  5. El Sheikh, A.F., Poret-Peterson, A.T., and Klotz, M.G. 2008. Characterization of two new genes, amoR and amoD, in the amo operon of the marine ammonia oxidizer Nitrosococcus oceani ATCC 19707. Appl. Environ. Microbiol. 74, 312-318. https://doi.org/10.1128/AEM.01654-07
  6. Foesel, B.U., Gieseke, A., Schwermer, C., Stief, P., Koch, L., Cytryn, E., de la Torre, J.R., van Rijn, J., Minz, D., Drake, H.L., et al. 2008. Nitrosomonas Nm143-like ammonia oxidizers and Nitrospira marina-like nitrite oxidizers dominate the nitrifier community in a marine aquaculture biofilm. FEMS Microbiol. Ecol. 63, 192-204. https://doi.org/10.1111/j.1574-6941.2007.00418.x
  7. Head, I.M., Hiorns, W.D., Embley, T.M., McCarthy, A.J., and Saunders, J.R. 1993. The phylogeny of autotrophic ammoniaoxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J. Gen. Microbiol. 139 Pt 6, 1147-1153. https://doi.org/10.1099/00221287-139-6-1147
  8. Itoi, S., Niki, A., and Sugita, H. 2006. Changes in microbial communities associated with the conditioning of filter material in recirculating aquaculture systems of the pufferfish Takifugu rubripes. Aquaculture 256, 287-295. https://doi.org/10.1016/j.aquaculture.2006.02.037
  9. Kim, J.N., Kim, Y., Jeong, Y., Roe, J.H., Kim, B.G., and Cho, B.K. 2015. Comparative genomics reveals the core and accessory genomes of Streptomyces species. J. Microbiol. Biotechnol. 25, 1599-1605. https://doi.org/10.4014/jmb.1504.04008
  10. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120. https://doi.org/10.1007/BF01731581
  11. Klotz, M.G. and Stein, L.Y. 2011. Genomics of ammonica-oxidizing bacteria and insights into their evolution. Nitrification, American Society of Microbiology.
  12. Medini, D., Donati, C., Tettelin, H., Masignani, V., and Rappuoli, R. 2005. The microbial pan-genome. Curr. Opin. Genet. Dev. 15, 589-594. https://doi.org/10.1016/j.gde.2005.09.006
  13. Mitchell, A., Chang, H.Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., McAnulla, C., McMenamin, C., Nuka, G., Pesseat, S., et al. 2015. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 43, D213-221. https://doi.org/10.1093/nar/gku1243
  14. Norton, J.M., Klotz, M.G., Stein, L.Y., Arp, D.J., Bottomley, P.J., Chain, P.S., Hauser, L.J., Land, M.L., Larimer, F.W., Shin, M.W., et al. 2008. Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl. Environ. Microbiol. 74, 3559-3572. https://doi.org/10.1128/AEM.02722-07
  15. Purkhold, U., Wagner, M., Timmermann, G., Pommerening-Roser, A., and Koops, H.P. 2003. 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. Int. J. Syst. Evol. Microbiol. 53, 1485-1494. https://doi.org/10.1099/ijs.0.02638-0
  16. Squizzato, S., Park, Y.M., Buso, N., Gur, T., Cowley, A., Li, W., Uludag, M., Pundir, S., Cham, J.A., McWilliam, H., et al. 2015. The EBI Search engine: providing search and retrieval functionality for biological data from EMBL-EBI. Nucleic Acids Res. 43, W585-588. https://doi.org/10.1093/nar/gkv316
  17. Stein, L.Y., Arp, D.J., Berube, P.M., Chain, P.S., Hauser, L., Jetten, M.S., Klotz, M.G., Larimer, F.W., Norton, J.M., Op den Camp, H.J., et al. 2007. Whole-genome analysis of the ammoniaoxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. Environ. Microbiol. 9, 2993-3007. https://doi.org/10.1111/j.1462-2920.2007.01409.x
  18. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  19. Tatusov, R.L., Koonin, E.V., and Lipman, D.J. 1997. A genomic perspective on protein families. Science 278, 631-637. https://doi.org/10.1126/science.278.5338.631
  20. Teske, A., Alm, E., Regan, J.M., Toze, S., Rittmann, B.E., and Stahl, D.A. 1994. Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J. Bacteriol. 176, 6623-6630. https://doi.org/10.1128/jb.176.21.6623-6630.1994
  21. Tettelin, H., Masignani, V., Cieslewicz, M.J., Donati, C., Medini, D., Ward, N.L., Angiuoli, S.V., Crabtree, J., Jones, A.L., Durkin, A.S., et al. 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". Proc. Natl. Acad. Sci. USA 102, 13950-13955. https://doi.org/10.1073/pnas.0506758102
  22. Utaker, J.B., Bakken, L., Jiang, Q.Q., and Nes, I.F. 1995. Phylogenetic analysis of seven new isolates of ammonia-oxidizing bacteria based on 16S rRNA gene sequences. Syst. Appl. Microbiol. 18, 549-559. https://doi.org/10.1016/S0723-2020(11)80415-7
  23. Vernikos, G., Medini, D., Riley, D.R., and Tettelin, H. 2015. Ten years of pan-genome analyses. Curr. Opin. Microbiol. 23, 148-154. https://doi.org/10.1016/j.mib.2014.11.016
  24. Xia, F., Zou, B., Shen, C., Zhu, T., Gao, X.H., and Quan, Z.X. 2015. Complete genome sequence of Methylophilus sp. TWE2 isolated from methane oxidation enrichment culture of tap-water. J. Biotechnol. 211, 121-122. https://doi.org/10.1016/j.jbiotec.2015.07.023
  25. Xiong, X.H., Zhi, J.J., Yang, L., Wang, J.H., Zhao, Y., Wang, X., Cui, Y.J., Dong, F., Li, M.X., Yang, Y.X., et al. 2011. Complete genome sequence of the bacterium Methylovorus sp. strain MP688, a high-level producer of pyrroloquinolone quinone. J. Bacteriol. 193, 1012-1013. https://doi.org/10.1128/JB.01431-10
  26. Zhao, Y., Wu, J., Yang, J., Sun, S., Xiao, J., and Yu, J. 2012. PGAP: pan-genomes analysis pipeline. Bioinformatics 28, 416-418. https://doi.org/10.1093/bioinformatics/btr655

Cited by

  1. Increased N 2 O emission by inhibited plant growth in the CO 2 leaked soil environment: Simulation of CO 2 leakage from carbon capture and storage (CCS) site vol.607-608, 2017, https://doi.org/10.1016/j.scitotenv.2017.07.030