• Title/Summary/Keyword: Genome project

Search Result 227, Processing Time 0.025 seconds

DNA Chip Technologies

  • Hwang, Seoung-Yong;Lim, Geun-Bae
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.3
    • /
    • pp.159-163
    • /
    • 2000
  • The genome sequencing project has generated and will contitute to generate enormous amounts of sequence data. Since the first complete genome sequence of bacterium Haemophilus in fluenzae was published in 1995, the complete genome sequences of 2 eukaryotic and about 22 prokaryotic organisms have detemined. Given this everincreasing amounts of sequence information, new strategies are necessary to efficiently pursue the phase of the geome project- the elucidation of gene expression patterns and gene product function on a whole genome scale. In order to assign functional information to the genome sequence, DNA chip technology was developed to efficienfly identify the differential expression pattern of indepondent biogical samples. DNA chip provides a new tool for genome expreesion analysis that may revolutionize revolutionize many aspects of human kife including mew surg discovery and human disease diagnostics.

  • PDF

Basic Concept of Gene Microarray (Gene Microarray의 기본개념)

  • Hwang, Seung Yong
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.2
    • /
    • pp.203-207
    • /
    • 2001
  • The genome sequencing project has generated and will continue to generate enormous amounts of sequence data including 5 eukaryotic and about 60 prokaryotic genomes. Given this ever-increasing amounts of sequence information, new strategies are necessary to efficiently pursue the next phase of the genome project-the elucidation of gene expression patterns and gene product function on a whole genome scale. In order to assign functional information to the genome sequence, DNA chip(or gene microarray) technology was developed to efficiently identify the differential expression pattern of independent biological samples. DNA chip provides a new tool for genome expression analysis that may revolutionize many aspects of biotechnology including new drug discovery and disease diagnostics.

  • PDF

DNA Fragment Assembly

  • 박근수
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2002.06a
    • /
    • pp.105-121
    • /
    • 2002
  • 최근 인간 지놈(genome)의 DNA가 밝혀져서 많은 관심을 받았는데, 이를 수행하는 방법을 소개한다. Human Genome Project에서 채택한 BAC-to-BAC 방식과 Celera 회사에서 채택한 whole genome shotgun 방식을 설명한다. 또한 두 방식에서 공히 fragment assembly 프로그램을 사용하는데, 이 프로그램의 개요를 설명한다.

  • PDF

A Gene-list Identification Methology on the Initial Stage of Genome Project (유전체 분석 초기 단계에서 유전자 리스트 작정을 위한 방법론)

  • 오정수;안명상;조완섭;권해룡;김영창
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.11a
    • /
    • pp.343-346
    • /
    • 2003
  • To predict and analyze genes, many methods and tools are already developed in Bioinformatics field which is being more important in future. And many biologists have now performed the research with them. Although it is possible to identify gene and to analyze its function efficiently without experimental methods, it is still hard work. In this paper, we propose a method that make gene list on the initial stage of Genome project. It is difficult to obtain detailed gene list in the initial stage of Genome project. but proposed system provides gene information as much as possible even in the initial stage.

  • PDF

Next-Generation Sequencing and Epigenomics Research: A Hammer in Search of Nails

  • Sarda, Shrutii;Hannenhalli, Sridhar
    • Genomics & Informatics
    • /
    • v.12 no.1
    • /
    • pp.2-11
    • /
    • 2014
  • After the initial enthusiasm of the human genome project, it became clear that without additional data pertaining to the epigenome, i.e., how the genome is marked at specific developmental periods, in different tissues, as well as across individuals and species-the promise of the genome sequencing project in understanding biology cannot be fulfilled. This realization prompted several large-scale efforts to map the epigenome, most notably the Encyclopedia of DNA Elements (ENCODE) project. While there is essentially a single genome in an individual, there are hundreds of epigenomes, corresponding to various types of epigenomic marks at different developmental times and in multiple tissue types. Unprecedented advances in next-generation sequencing (NGS) technologies, by virtue of low cost and high speeds that continue to improve at a rate beyond what is anticipated by Moore's law for computer hardware technologies, have revolutionized molecular biology and genetics research, and have in turn prompted innovative ways to reduce the problem of measuring cellular events involving DNA or RNA into a sequencing problem. In this article, we provide a brief overview of the epigenome, the various types of epigenomic data afforded by NGS, and some of the novel discoveries yielded by the epigenomics projects. We also provide ample references for the reader to get in-depth information on these topics.

Cereal Resources in National BioResource Project of Japan

  • Sato, Kazuhiro;Endo, Takashi R.;Kurata, Nori
    • Interdisciplinary Bio Central
    • /
    • v.2 no.4
    • /
    • pp.13.1-13.8
    • /
    • 2010
  • The National BioResource Project of Japan is a governmental project to promote domestic/international research activities using biological resources. The project has 27 biological resources including three cereal resources. The core center and sub-center which historically collected the cereal resources were selected for each cereal program. These resources are categorized into several different types in the project; germplasm, genetic stocks, genome resources and database information. Contents of rice resources are wild species, local varieties in East and Southwest Asia & wild relatives, MNU-induced chemical mutant lines, marker tester lines, chromosome substitution lines and other experimental lines. Contents of wheat resources are wild strains, cultivated strains, experimental lines, rye wild and cultivated strains; EST clones and full-length cDNA clones. Contents of barley resources are cultivar and experimental lines, core collection, EST/cDNA clones, BAC clones, their filters and superpool DNA. Each resource is accessible from the online database to see the contents and information about the resources. Links to the genome information and genomic tools are also important function of each database. The major contents and some examples are presented here.

Exploring cancer genomic data from the cancer genome atlas project

  • Lee, Ju-Seog
    • BMB Reports
    • /
    • v.49 no.11
    • /
    • pp.607-611
    • /
    • 2016
  • The Cancer Genome Atlas (TCGA) has compiled genomic, epigenomic, and proteomic data from more than 10,000 samples derived from 33 types of cancer, aiming to improve our understanding of the molecular basis of cancer development. Availability of these genome-wide information provides an unprecedented opportunity for uncovering new key regulators of signaling pathways or new roles of pre-existing members in pathways. To take advantage of the advancement, it will be necessary to learn systematic approaches that can help to uncover novel genes reflecting genetic alterations, prognosis, or response to treatments. This minireview describes the updated status of TCGA project and explains how to use TCGA data.