DOI QR코드

DOI QR Code

Cereal Resources in National BioResource Project of Japan

  • Sato, Kazuhiro (Barley and Wild Plant Resource Center, Institute of Plant Science and Resources, Okayama University) ;
  • Endo, Takashi R. (Laboratory of Genetics, Graduate School of Agriculture, Kyoto University) ;
  • Kurata, Nori (Genetic Strains Research Center, National Institute of Genetics)
  • Received : 2010.11.29
  • Accepted : 2010.12.08
  • Published : 2010.12.31

Abstract

The National BioResource Project of Japan is a governmental project to promote domestic/international research activities using biological resources. The project has 27 biological resources including three cereal resources. The core center and sub-center which historically collected the cereal resources were selected for each cereal program. These resources are categorized into several different types in the project; germplasm, genetic stocks, genome resources and database information. Contents of rice resources are wild species, local varieties in East and Southwest Asia & wild relatives, MNU-induced chemical mutant lines, marker tester lines, chromosome substitution lines and other experimental lines. Contents of wheat resources are wild strains, cultivated strains, experimental lines, rye wild and cultivated strains; EST clones and full-length cDNA clones. Contents of barley resources are cultivar and experimental lines, core collection, EST/cDNA clones, BAC clones, their filters and superpool DNA. Each resource is accessible from the online database to see the contents and information about the resources. Links to the genome information and genomic tools are also important function of each database. The major contents and some examples are presented here.

Keywords

References

  1. Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, A., Wicker, T., Tagiri, A., et al. (2007). Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci U S A 104, 1424-1429. https://doi.org/10.1073/pnas.0608580104
  2. Nomura, T., Ishihara, A., Yanagita, R.C., Endo, T.R., and Iwamura, H. (2005). Three genomes differentially contribute to the biosynthesis of benzoxazinones in hexaploid wheat. Proc Natl Acad Sci U S A 102, 16490-16495. https://doi.org/10.1073/pnas.0505156102
  3. Ueguchi-Tanaka, M., Ashikari, M., Nakajima, M., Itoh, H., Katoh, E., Kobayashi, M., Chow, T.Y., Hsing, Y.I., Kitano, H., Yamaguchi, I., et al. (2005). GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437, 693-698. https://doi.org/10.1038/nature04028
  4. Nonomura, K.-I., Morishima, H., Miyabayashi, T., Yamaki, S., Eiguchi, M., Kuba T., and N. Kurata N. (2010). The wild Oryza collection in National BioResource Project (NBRP) of Japan: History, biodiversity and utility. Breed Sci 60, (in press).
  5. Barley DB: http://www.shigen.nig.ac.jp/barley/.
  6. Knupffer, H., and van Hintum, Th.J.L. (2003). Summarised diversity-the Barley Core Collection. In: R. von Bothmer, R., van Hintum, Th.J.L., H. Knupffer H., and Sato K. (eds), Diversity in Barley (Hordeum vulgare), Elsevier Science B.V., 250-258.
  7. Bothmer, R. von, Sato, K., Komatsuda, T., Yasuda S., and Fischbeck, G. (2003). The domestication of cultivated barley. In: R. von Bothmer, R., van Hintum, Th.J.L., H. Knupffer H., and Sato K. (eds), Diversity in Barley (Hordeum vulgare), Elsevier Science B.V., 9-27.
  8. Hirabayashi, H., Nonoue, Y., Kuno-Takemoto, Y., Takeuchi1, Y., Kato, H., Nemoto, H., Ogawa, T., Yano, M., Imbe, T., and Ando, I. (2010). Development of Introgression lines derived from Oryza rufipogon and O. glumaepatura in the genetic background of japonica cultivated rice (O. sativa L.). Breed Sci 60, (in press).
  9. Shim, R.A., Ashikari, M., Angeles, E.R., and Takashi T. (2010). Development and evaluation of Oryza glaberrima Steud chromosome segment substitution lines (CSSLs) in the background of O. sativa L. cv. Koshihikari. Breed Sci 60, (in press).
  10. Telebanco-Yanoria, M.J., Koide, Y., Fukuta, Y., Imbe, T., Kato, H., Tsunematsu H., and Kobayashi, N. (2010). Development of near-isogenic lines of Japonica-type variety Lijiangxintuanheigu as differentials for blast resistance. Breed Sci 60, (in press).
  11. Yara, A., Nguyen, P.C., Matsumura, M., Yoshimura A., and Yasui H. (2010). Development of near-isogenic lines for BPH25(t) and BPH26(t), conferring resistance to brown planthopper, Nilaparvata lugens (Stal.) in the Indica rice variety ADR52. Breed Sci 60, (in press).
  12. Yoshimura, A., Nagayama, H., Sobrizal, K., T., Sanchez, P.L., Doi, K., Yamagata, Y., and Yasui, H. (2010). Introgression lines of rice (Oryza sativa L.) carrying donor genome of wild species, O. glumaepatula Steud. and O. meridionalis Ng. Breed Sci 60 (in press).
  13. Satoh, H., Matsusaka, T.H., and Kumamaru, T. (2010). Saturation mutant library developed by the treatment of fertilized egg cells with MNU in rice. Breed Sci 60, (in press).
  14. Sears, E.R. (1954). The aneuploids of common wheat. Mo. Agric. Exp. Stn. Res. Bull. 572, 1-58.
  15. Sears, E.R., and Sears, L.M.S. (1978). The telocentric chromosomes of common wheat, Proc Int Wheat Gene. Symp, New Delhi, India, 389-446.
  16. Endo, T.R., and Gill, B.S. (1996). The deletion stocks of common wheat. J. Heredity 87, 295-307.
  17. Islam, A.K.M.R., Shepherd, K.W., and Sparrow, D.H.B. (1981). Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46, 161-174. https://doi.org/10.1038/hdy.1981.24
  18. Islam, A.K.M.R. (1983). Ditelosomic additions of barley chromosomes to wheat. Proc 6th Int Wheat Genet Symp, Kyoto, Japan, 233-238.
  19. Joppa, L.R. (1993). Chromosome engineering in tetraploid wheat. Crop Sc 33, 908-914. https://doi.org/10.2135/cropsci1993.0011183X003300050006x
  20. Tsunewaki, K., Wang, G.-Z., and Matsuoka, Y. (2002). Plasmon analysis of Triticum (wheat) and Aegilops. 2. Characterization and classification of 47 plasmons based on their effects on common wheat phenotype. Genes Genet Systems 77, 409-427. https://doi.org/10.1266/ggs.77.409
  21. Lundqvist, U., Franckowiak, J., and Konishi, T. (1996). New and revised descriptions of barley genes. Barley Genet Newsl 26, 22-43.
  22. Marquez-Cedillo L. A., Hayes, P. M., Jones, B. L., Kleinhofs, A., Legge, W. G., Rossnagel, B. G., Sato, K., Ullrich, S., Wesenberg D. M., and the North American Barley Genome Mapping Project (2000). QTL analysis of malting quality in barley based on the doubled-haploid progeny of two North American varieties representing different germplasm groups. Theor App. Gene. 101, 173-184. https://doi.org/10.1007/s001220051466
  23. Kleinhofs, A., Kilian, A., Saghai Maroof, M., Biyashev, R., Hayes, P., Chen, F., Lapitan, N., Fenwick, A., Blake, T., Kanazin, V., et al. (1993). A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86, 705-713.
  24. Szucs, P., Blake, V.C., Bhat, P.R., Chao, S., Close, T.J., Cuesta-Marcos, A., Muehlbauer, G.J., Ramsay, L., Waugh, R., and Hayes, M. (2009). An integrated resource for barley linkage map and malting quality QTL alignment. The Plant Genome 2, 134-140. https://doi.org/10.3835/plantgenome2008.01.0005
  25. Sato, K., and Takeda, K. (2009). An application of high-throughput SNP genotyping for barley genome mapping and characterization of recombinant chromosome substitution lines. Theor Appl Genet 119, 613-619. https://doi.org/10.1007/s00122-009-1071-9
  26. Sato, K., Close, T.J., Bhat, P.R., M., M.-A., and Muehlbauer, G.J. (2010). Development of genetic map and alignment of recombinant chromosome substitution lines from a cross of EST donors by high accuracy SNP typing in barley. Plant Cell Physiol (in press).
  27. National Bioresource Project: http://www.nbrp.jp/.
  28. Oryzabase: http://www.shigen.nig.ac.jp/rice/oryzabase/top/top.jsp.
  29. Yamazaki, Y., Akashi, R., Banno, Y., Endo, T., Ezura, H., Fukami-Kobayashi, K., Inaba, K., Isa, T., Kamei, K., Kasai, F. et al. (2010). NBRP databases: databases of biological resources in Japan. Nucleic Acids Res. 38, D26-D32. https://doi.org/10.1093/nar/gkp996
  30. Gramene: http://www.gramene.org/.
  31. IRRI database: http://www.iris.irri.org/.
  32. Ogihara, Y., Kawaura, K., Imamura, H., and Mochida, K. (2009). Annual report of National Bioresource Project-Wheat II. DNA resources, 2007. eWIS 107, 36.
  33. Ogihara, Y., Kawaura, K., and Imamura, H. (2009). Annual report of National Bioresource Project-Wheat II. DNA resources, 2008. eWIS 108, 23.
  34. Ogihara, Y., Kawaura, K., and Umeda, K. (2010). Annual report of National Bioresource Project-Wheat II. DNA resources, 2009. eWIS 110, 45.
  35. Nitta, M. and Nasuda, S. (2009). A report of the project "Polymorphism survey among hexaploid wheat and its relatives by DNA markers" granted by the National Bioresource Project-Wheat, Japan. eWIS 107, 33-35.
  36. KOMUGI database: http://www.shigen.nig. ac.jp/wheat/komugi/.
  37. Nitta, M. and Nasuda, S. (2009). A report of the project "Polymorphism survey among hexaploid wheat and its relatives by DNA markers". eWIS 108, 21-22.
  38. Nitta, M. and Nasuda, S. (2010). Annual report (fiscal year 2009) of the project "Polymorphism survey among hexaploid wheat and its relatives by DNA markers". eWIS 110, 47-48.
  39. HarvEST database: http://harvest.ucr.edu/.
  40. Close, T.J., Wanamaker, S.I., Caldo, R.A., Turner, S.M., Ashlock, D.A., Dickerson, J.A., Wing, R.A., Muehlbauer, G.J., Kleinhofs, A., and Wise, R.P. (2004). A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134, 960-968. https://doi.org/10.1104/pp.103.034462
  41. Druka, A., Muehlbauer, G., Druka, I., Caldo, R., Baumann, U., Rostoks, N., Schreiber, A., Wise, R., Close, T., Kleinhofs, A., Graner, A., Schulman, A., Langridge, P., Sato, K., Hayes, P., McNicol, J., Marshall, D. and Waugh, R. (2006). An atlas of gene expression from seed to seed through barley development. Funct Integr Genomics 6, 202-211. https://doi.org/10.1007/s10142-006-0025-4
  42. Close, T.J., Bhat, P.R., Lonardi, S., Wu, Y., Rostoks, N., Ramsay, L., Druka, A., Stein, N., Svensson, J.T., Wanamaker, S., et al. (2009). Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10, 582. https://doi.org/10.1186/1471-2164-10-582
  43. Sato, K., Nankaku, N., and Takeda, K. (2009). A high-density transcript linkage map of barley derived from a single population. Heredity 103, 110-117. https://doi.org/10.1038/hdy.2009.57
  44. Hori, K., Takehara, S., Nankaku, N., Sato, K., Sasakuma, T., and Takeda. K. (2007). Linkage map construction and QTL detection based on barley ESTs in A genome diploid wheat. Breed Sci 60, (in press) 57, 39-45.
  45. Sato, K., Shin-I, T., Seki, M., Shinozaki, S., Yoshida, H., Takeda, K., Yamazaki, Y., and Kohara, Y. (2009). 5,006 full length cDNA collection to access genome resources in barley. DNA Res 16, 81-89. https://doi.org/10.1093/dnares/dsn034
  46. Saisho, D., Myoraku, E., Kawasaki, S., Sato K., and Takeda. K. (2007). Construction and characterization of a bacterial artificial chromosome (BAC) library for Japanese malting barley 'Haruna Nijo'. Breed Sci 57, 29-38. https://doi.org/10.1270/jsbbs.57.29
  47. Fang, Z., Polacco, M., Chen, S., Schroeder, S., Hancock, D., Sanchez, H., and Coe, E. (2003). cMap: the comparative genetic map viewer. Bioinformatics 19, 416-417. https://doi.org/10.1093/bioinformatics/btg012
  48. Linde-Laursen, I., Heslop-Harrison, J. S., Shepherd, K. W., and Taketa. S. (1997). The barley genome and its relationship with the wheat genomes. A survey with an internationally agreed recommendation for barley chromosome nomenclature. Hereditas 126, 1-16. https://doi.org/10.1111/j.1601-5223.1997.00001.x
  49. Internaional Barley Sequencing Consortium: www. barleygenome.org.