• Title/Summary/Keyword: Genetic merit

Search Result 27, Processing Time 0.018 seconds

Effect of Imported Young Bulls with Higher Genetic Merit on Genetic Progress of Japanese Holstein Population

  • Terawaki, Y.;Shimizu, H.;Fukui, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.4
    • /
    • pp.416-421
    • /
    • 1997
  • The effect of imported young bulls on the genetic progress was examined in the Holstein dairy cattle population in Japan. The effect of the difference of mean genetic merit between imported and domestic young bulls ("genetic difference") was recognized on the genetic progress of the domestic animals in the early stage of selection. On the other hand, the genetic progress of domestic animals were remarkably influenced by the genetic trend of imported young bulls ("genetic trend") in the later stage. Import of young bulls originated from high genetic level of young bulls originated from high genetic level population improved the genetic progress of domestic population. But, the increase of the immigration ratio of imported young bulls ("immigration ratio") did not influence linearly on the progress of the genetic merit of domestic animals. Even if "immigration ratio" was 100%, the genetic merit of domestic animals could not overcome the one of imported young bulls. In the later stage of selection, the genetic merit of domestic animals ran parallel to those of imported young bulls.

Dairy Cows of High Genetic Merit for Yields of Milk, Fat and Protein - Review -

  • Norman, H.D.;Powell, R.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1316-1323
    • /
    • 1999
  • Extensive emphasis on milk and milk fat yields with no diversion for beef performance increased the yield efficiency of North American dairy cattle. Heavy demand for North American genetics followed national strain comparison trials in Poland, and US and Canadian dairy cattle and germplasm still are an important source of genetics for many countries. Genetic improvement has accelerated in many countries because of the implementation of sampling programs for young bulls and improved evaluation procedures. Rapid access to information and more frequent calculation of genetic information also are having a positive impact on genetic improvement. Traits other than yield should be considered in a breeding program, but those traits mist have a reasonable opportunity for improvement and sufficient economic worth. Because of ever increasing efficiency, the world's milk supply comes from fewer cows each year. However, no decline in the rate of genetic improvement is apparent under current genetic practices; estimates of heritability are increasing, and a decline in yield efficiency is unlikely in the near future. As management improves, especially for subtropical conditions, many of the selection principles used in temperate climates will be adopted for more adverse environmental conditions.

Optimal Design of Dielectric-Filled Plasmonic Slot Waveguide with Genetic Algorithm

  • Kim, Daekeun;Jung, Jaehoon
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.70-75
    • /
    • 2012
  • An optimization methodology for designing a dielectric-filled plasmonic slot waveguide is presented. The genetic algorithm combined with a rigorous analysis based on the finite element method is used to optimize a nano-scaled plasmonic slot waveguide to have high mode confinement and a long propagation length, for which the objective function is defined as a figure of merit combining both propagation parameters.

Optimal Design of Dielectric-loaded Surface Plasmon Polariton Waveguide with Genetic Algorithm

  • Jung, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.277-281
    • /
    • 2010
  • We propose a design and optimization method for a dielectric-loaded surface plasmon polariton waveguide using a genetic algorithm. This structure consists of a polymer ridge on top of two layers of substrate and gold film. The thickness, width and refractive index of the ridge are designed to optimize the figures of merit including mode confinement and propagation length. The modal analysis combined with the effective index method shows that the designed waveguide exhibits a fundamental propagation mode with high mode confinement while ensuring that the propagation loss remains relatively low.

Lactation Persistency as a Component Trait of the Selection Index and Increase in Reliability by Using Single Nucleotide Polymorphism in Net Merit Defined as the First Five Lactation Milk Yields and Herd Life

  • Togashi, K.;Hagiya, K.;Osawa, T.;Nakanishi, T.;Yamazaki, T.;Nagamine, Y.;Lin, C.Y.;Matsumoto, S.;Aihara, M.;Hayasaka, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1073-1082
    • /
    • 2012
  • We first sought to clarify the effects of discounted rate, survival rate, and lactation persistency as a component trait of the selection index on net merit, defined as the first five lactation milks and herd life (HL) weighted by 1 and 0.389 (currently used in Japan), respectively, in units of genetic standard deviation. Survival rate increased the relative economic importance of later lactation traits and the first five lactation milk yields during the first 120 months from the start of the breeding scheme. In contrast, reliabilities of the estimated breeding value (EBV) in later lactation traits are lower than those of earlier lactation traits. We then sought to clarify the effects of applying single nucleotide polymorphism (SNP) on net merit to improve the reliability of EBV of later lactation traits to maximize their increased economic importance due to increase in survival rate. Net merit, selection accuracy, and HL increased by adding lactation persistency to the selection index whose component traits were only milk yields. Lactation persistency of the second and (especially) third parities contributed to increasing HL while maintaining the first five lactation milk yields compared with the selection index whose only component traits were milk yields. A selection index comprising the first three lactation milk yields and persistency accounted for 99.4% of net merit derived from a selection index whose components were identical to those for net merit. We consider that the selection index comprising the first three lactation milk yields and persistency is a practical method for increasing lifetime milk yield in the absence of data regarding HL. Applying SNP to the second- and third-lactation traits and HL increased net merit and HL by maximizing the increased economic importance of later lactation traits, reducing the effect of first-lactation milk yield on HL (genetic correlation ($r_G$) = -0.006), and by augmenting the effects of the second- and third-lactation milk yields on HL ($r_G$ = 0.118 and 0.257, respectively).

Design of Plasmonic Slot Waveguide with High Localization and Long Propagation Length

  • Lee, Ki-Sik;Jung, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.305-309
    • /
    • 2011
  • We present an efficient design approach for a plasmonic slot waveguide using a genetic algorithm. The analyzed structure consists of a nanometric slot in a thin metallic film embedded within a dielectric. To achieve high confinement without long propagation length, the thickness and width of the slot are optimally designed in order to optimize the figures of merit including mode confinement and propagation length. The optimized design is based on the finite element method and enhances the guiding and focusing of light power propagation.

Estimation of Genetic, Phenotypic and Environmental Trends in Hariana Cattle

  • Singh, K.;Sangwan, M.L.;Dalal, D.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.1
    • /
    • pp.7-10
    • /
    • 2002
  • The breeding data relating to Hariana herd spread over 18 years (1979-96) were analysed to estimate genetic, phenotypic and environmental changes in characters of economic importance which might have taken place during the several years of selective breeding practiced in the herd. The average genetic changes in a given character were estimated by four methods. The phenotypic trends observed for different economic traits were not significant. On changing the method of estimation, magnitude and direction of genetic trends changed. Comparison of estimates of genetic trends by different methods showed that adjustments for biases due to non-random allotment of dams with respect to their age and merit suggested by Powell and Freeman (1974) were useful for increasing the precision of the estimates. Hence, this method was found to be the best method for estimation of genetic trends. The estimate of genetic trends by this method were 4.03${\pm}$6.21 days, 3.24${\pm}$5.33 kg, 0.15${\pm}$0.43 days, 0.09${\pm}$0.59 days, 0.01${\pm}$0.02 kg and 0.01${\pm}$0.01 kg for age at first calving, first lactation milk yield, first lactation length, first calving interval, first lactation milk yield per day lactation length and first lactation milk yield per day of calving interval, respectively.

Decision-making Method of Optimum Inspection Interval for Plant Maintenance by Genetic Algorithms (유전 알고리즘에 의한 플랜트 보전을 위한 최적검사기간 결정 방법론)

  • 서광규;서지한
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.2
    • /
    • pp.1-8
    • /
    • 2003
  • The operation and management of a plant require proper accounting for the constraints coming from reliability requirements as well as from budget and resource considerations. Most of the mathematical methods to decide the inspection time interval for plant maintenance by reliability theory are too complicated to be solved. Moreover, the mathematical and theoretical models are not usually cases in the practical applications. In order to overcome these problems, we propose a new the decision-making method of optimal inspection interval to minimize the maintenance cost by reliability theory and genetic algorithm (GA). The most merit of the proposed method is to decide the inspection interval for a plant machine of which failure rate $\lambda$(t) conforms to any probability distribution. Therefore, this method is more practical. The efficiency of the proposed method is verified by comparing the results obtained by GA-based method with the inspection model haying regular time interval.

Development of nutrigenomic based precision management model for Hanwoo steers

  • Chandima Gajaweera;Dong Hun Kang;Doo Ho Lee;Yeong-Kuk Kim;Bo Hye Park;Sun Sik Chang;Ui Hyung Kim;Seung Hwan Lee;Ki Yong Chung
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.596-610
    • /
    • 2023
  • Focusing high marble deposition, Hanwoo feedlot system uses high-energy diet over the prolonged fattening period. However, due to the individual genetic variation, around 40% of them are graded into inferior quality grades (QG), despite they utilized the same resources. Therefore, focusing on development of a nutrigenomic based precision management model, this study was to evaluated the response to the divergent selection on genetic merit for marbling score (MS), under different dietary total digestible nutrient (TDN) levels. Total of 111 calves were genotyped and initially grouped according to estimated breeding value (high and low) for marbling score (MS-EBV). Subsequently, managed under two levels of feed TDN%, over the calf period, early, middle, and final fattening periods following 2 × 2 factorial arrangement. Carcasses were evaluated for MS, Back fat thickness (BFT) and Korean beef quality grading standard. As the direct response to the selection was significant, the results confirmed the importance of initial genetic grouping of Hanwoo steers for MS-EBV. However, dietary TDN level did not show an effect (p > 0.05) on the MS. Furthermore, no genetic-by-nutrition interaction for MS (p > 0.05) was also observed. The present results showed no correlation response on BFT (p > 0.05), which indicates that the selection based on MS-EBV can be used to enhance the MS without undesirable effect on BFT. Ultimate turnover of the Hanwoo feedlot operation is primarily determined by the QGs. The present model shows that the initial grouping for MS-EBV increased the proportion of carcasses graded for higher QGs (QG1++ and QG1+) by approximately 20%. Moreover, there appear to be a potential to increase the proportion of QG 1++ animals among the high-genetic group by further increasing the dietary energy content. Overall, this precision management strategy suggests the importance of adopting an MS based initial genetic grouping system for Hanwoo steers with a subsequent divergent management based on dietary energy level.

Implementation of genomic selection in Hanwoo breeding program (유전체정보활용 한우개량효율 증진)

  • Lee, Seung Hwan;Cho, Yong Min;Lee, Jun Heon;Oh, Seong Jong
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.397-406
    • /
    • 2015
  • Quantitative traits are mostly controlled by a large number of genes. Some of these genes tend to have a large effect on quantitative traits in cattle and are known as major genes primarily located at quantitative trait loci (QTL). The genetic merit of animals can be estimated by genomic selection, which uses genome-wide SNP panels and statistical methods that capture the effects of large numbers of SNPs simultaneously. In practice, the accuracy of genomic predictions will depend on the size and structure of reference and training population, the effective population size, the density of marker and the genetic architecture of the traits such as number of loci affecting the traits and distribution of their effects. In this review, we focus on the structure of Hanwoo reference and training population in terms of accuracy of genomic prediction and we then discuss of genetic architecture of intramuscular fat(IMF) and marbling score(MS) to estimate genomic breeding value in real small size of reference population.