DOI QR코드

DOI QR Code

Optimal Design of Dielectric-Filled Plasmonic Slot Waveguide with Genetic Algorithm

  • Kim, Daekeun (Department of Mechanical Engineering, Dankook University) ;
  • Jung, Jaehoon (Department of Electronics and Electrical Engineering, Dankook University)
  • Received : 2012.02.17
  • Accepted : 2012.03.05
  • Published : 2012.03.25

Abstract

An optimization methodology for designing a dielectric-filled plasmonic slot waveguide is presented. The genetic algorithm combined with a rigorous analysis based on the finite element method is used to optimize a nano-scaled plasmonic slot waveguide to have high mode confinement and a long propagation length, for which the objective function is defined as a figure of merit combining both propagation parameters.

Keywords

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). https://doi.org/10.1038/nature01937
  2. P. Berini, "Figures of merit for surface plasmon waveguides," Opt. Express 14, 13030-13042 (2006). https://doi.org/10.1364/OE.14.013030
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators,"Nature 440, 508-511 (2006). https://doi.org/10.1038/nature04594
  4. R, Selker, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004). https://doi.org/10.1364/JOSAA.21.002442
  5. P. Berini, "Bulk and surface sensitivities of surface plasmon waveguides," New J. Phys. 10, 105010 (2008). https://doi.org/10.1088/1367-2630/10/10/105010
  6. J. Park, H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express 16, 413-425 (2008). https://doi.org/10.1364/OE.16.000413
  7. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Nondiffractionlimited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002). https://doi.org/10.1209/epl/i2002-00360-9
  8. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003). https://doi.org/10.1038/nmat852
  9. T. Holmgaard and S. I. Bozhevolnyi, "Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides," Phys. Rev. B 75, 245405 (2007). https://doi.org/10.1103/PhysRevB.75.245405
  10. A. Degiron, C. Dellagiacoma, J. G. McIlhargey, G. Shvets, O. J. F. Martin, and D. R. Smith, "Simulations of hybrid long-range plasmon modes with application to $90^{\circ}$ bends," Opt. Lett. 32, 2354-2356 (2007). https://doi.org/10.1364/OL.32.002354
  11. P. Berini, "Air gaps in metal stripe waveguides supporting long-range surface plasmon polaritons," J. Appl. Phys. 102, 033112 (2007). https://doi.org/10.1063/1.2764222
  12. J. P. Guo and R. Adato, "Extended long range plasmon waves in finite thickness metal film and layered dielectric materials," Opt. Express 14, 12409-12418 (2006). https://doi.org/10.1364/OE.14.012409
  13. J. P. Guo and R. Adato, "Control of 2D plasmon-polariton mode with dielectric nanolayers," Opt. Express 16, 1232-1237 (2008). https://doi.org/10.1364/OE.16.001232
  14. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nat. Photonics 2, 496-500 (2008). https://doi.org/10.1038/nphoton.2008.131
  15. R. Salvador, A. Martinez, C. Garcia-Meca, R. Ortuno, and J. Marti, "Analysis of hybrid dielectric plasmonic waveguides," IEEE J. Select. Topics Quantum Electron. 14, 1496-1501 (2008). https://doi.org/10.1109/JSTQE.2008.920035
  16. N. N. Feng, M. L. Brongersma, and L. D. Negro, "Metaldielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 $\mu{m}$," IEEE J. Quantum Electron. 43, 479-485 (2007). https://doi.org/10.1109/JQE.2007.897913
  17. E. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, CA, USA, 1985).
  18. R. Buckley and P. Berini, "Figures of merit for 2D surface plasmon waveguides and application to metal stripes," Opt. Express 15, 12174-12182 (2007). https://doi.org/10.1364/OE.15.012174
  19. A. Hosseini, A. Nieuwoudt, and Y. Massoud, "Optimizing dielectric strips over a metallic substrate for subwavelength light confinement," IEEE Photon. Technol. Lett. 19, 522-524 (2007). https://doi.org/10.1109/LPT.2007.893827
  20. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (Springer-Verlag, London, UK, 1996).
  21. K. Lee and J. Jung, "Design of plasmonic slot waveguide with high localization and long propagation length," J. Opt. Soc. Korea 15, 305-309 (2011). https://doi.org/10.3807/JOSK.2011.15.3.305

Cited by

  1. Optimal design of plasmonic waveguide with fabrication tolerance vol.395, 2017, https://doi.org/10.1016/j.optcom.2016.03.087