DOI QR코드

DOI QR Code

Design of Plasmonic Slot Waveguide with High Localization and Long Propagation Length

  • Lee, Ki-Sik (Department of Electronics and Electrical Engineering, Dankook University) ;
  • Jung, Jae-Hoon (Department of Electronics and Electrical Engineering, Dankook University)
  • Received : 2011.08.30
  • Accepted : 2011.09.05
  • Published : 2011.09.25

Abstract

We present an efficient design approach for a plasmonic slot waveguide using a genetic algorithm. The analyzed structure consists of a nanometric slot in a thin metallic film embedded within a dielectric. To achieve high confinement without long propagation length, the thickness and width of the slot are optimally designed in order to optimize the figures of merit including mode confinement and propagation length. The optimized design is based on the finite element method and enhances the guiding and focusing of light power propagation.

Keywords

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer-Verlag, Berlin, Germany, 1988).
  2. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997). https://doi.org/10.1364/OL.22.000475
  3. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, "Compact Bragg gratings for long-range surface plasmon polaritons," J. Lightwave Technol. 24, 912-918 (2006). https://doi.org/10.1109/JLT.2005.862470
  4. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "In-line extinction modulator based on long-range surface plasmon polaritons," Opt. Comm. 244, 455-459 (2005). https://doi.org/10.1016/j.optcom.2004.09.045
  5. D. Kim, "Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors," Appl. Opt. 44, 3218-3223 (2005). https://doi.org/10.1364/AO.44.003218
  6. K.-M. Byun, "Development of nanostructured plasmonic substrates for enhanced optical biosensing," J. Opt. Soc. Korea 14, 65-76 (2010). https://doi.org/10.3807/JOSK.2010.14.2.065
  7. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, "Thermally activated variable attenuation of long-range surface plasmon-polariton waves," J. Lightwave Technol. 24, 4391-4401 (2006). https://doi.org/10.1109/JLT.2006.883683
  8. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004). https://doi.org/10.1063/1.1835997
  9. G. Veronis and S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005). https://doi.org/10.1364/OL.30.003359
  10. L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005). https://doi.org/10.1364/OPEX.13.006645
  11. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005). https://doi.org/10.1063/1.2149971
  12. J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006). https://doi.org/10.1021/nl0610477
  13. G. Veronis and S. Fan, "Modes of subwavelength plasmonic slot waveguides," J. Lightwave Technol. 25, 2511-2521 (2007). https://doi.org/10.1109/JLT.2007.903544
  14. N.-N. Feng, M. L. Brongersma, and L. D. Negro, "Metaldielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 ${\mu}m$," IEEE J. Quantum Electron. 43, 479-485 (2007). https://doi.org/10.1109/JQE.2007.897913
  15. R. Buckley and P. Berini, "Figures of merit for 2D surface plasmon waveguides and application to metal stripes," Opt. Express 15, 12174-12182 (2007). https://doi.org/10.1364/OE.15.012174
  16. J. Jung, "Optimal design of dielectric-loaded surface plasmon polariton waveguide with genetic algorithm," J. Opt. Soc. Korea 14, 277-281 (2010). https://doi.org/10.3807/JOSK.2010.14.3.277
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, USA, 1985).

Cited by

  1. Optimal Design of Dielectric-Filled Plasmonic Slot Waveguide with Genetic Algorithm vol.16, pp.1, 2012, https://doi.org/10.3807/JOSK.2012.16.1.070
  2. Gold Nanobelts as High Confinement Plasmonic Waveguides vol.13, pp.12, 2013, https://doi.org/10.1021/nl4037356
  3. Universal Expression of the Optical Power Dissipation in Multilayer Structures with Complex Permittivity and Permeability vol.51, pp.2R, 2012, https://doi.org/10.7567/JJAP.51.022001
  4. Universal Expression of the Optical Power Dissipation in Multilayer Structures with Complex Permittivity and Permeability vol.51, 2012, https://doi.org/10.1143/JJAP.51.022001