• Title/Summary/Keyword: Genetic loading

Search Result 116, Processing Time 0.026 seconds

SCRAPER EARTH-MOVING FLEET OPTIMIZATION VIA SPREADSHEET-BASED MODELING

  • Borinara Park
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.658-668
    • /
    • 2009
  • Earth-moving operation has a great impact on the overall budget and schedule of any heavy civil projects. More often than not, the operational decisions are made largely based on field personnel's experience and judgment. In particular, decisions on earth moving operations by scraper-dozer fleets have been heavily influenced by the following belief: "The longer a dozer pushes a scraper for loading, the better earth-moving productivity is gained by the fleet." Even though there is some truth to this notion, scraper-dozer earth moving operations involve a much complex process that requires a systematic analysis for predicting the maximum production. To this end, this paper presents a spreadsheet-based scraper-dozer fleet operation model for its production optimization. Various optimization techniques, including a genetic-algorithm method, are presented for comparison and each technique's pros and cons are discussed.

  • PDF

Hysteretic model for stud connection in composite structures

  • Xi Qin;Guotao Yang
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.587-599
    • /
    • 2023
  • The establishment of a hysteretic model which can accurately predict the hysteretic characteristics of the stud connection is of utmost importance for the seismic assessment of composite structures. In this paper, the Bouc-Wen-Baber-Noori(BWBN) model was adopted to describe the typical hysteretic characteristics of stud connections. Meanwhile, the Newton-Raphson iterative procedure and the Backward Euler method were used to determine the restoring force, and the Genetic Algorithm was employed to identify the parameters of the BWBN model based on the experimental data consisting of eight specimens. The accuracy of the identified parameters was demonstrated by comparison with the experimental data. Finally, prediction equations for the BWBN model parameters were developed in terms of the physical parameters of stud connections, which provides an approach to get the hysteretic response of stud connections conveniently.

Development of Preliminary Design Model for Ultra-Large Container Ships by Genetic Algorithm

  • Han, Song-I;Jung, Ho-Seok;Cho, Yong-Jin
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.4
    • /
    • pp.233-238
    • /
    • 2012
  • In this study, we carried out a precedent investigation for an ultra-large container ship, which is expected to be a higher value-added vessel. We studied a preliminary optimized design technique for estimating the principal dimensions of an ultra-large container ship. Above all, we have developed optimized dimension estimation models to reduce the building costs and weight, using previous container ships in shipbuilding yards. We also applied a generalized estimation model to estimate the shipping service costs. A Genetic Algorithm, which utilized the RFR (required freight rate) of a container ship as a fitness value, was used in the optimization technique. We could handle uncertainties in the shipping service environment using a Monte-Carlo simulation. We used several processes to verify the estimated dimensions of an ultra-large container ship. We roughly determined the general arrangement of an ultra-large container ship up to 1500 TEU, the capacity check of loading containers, the weight estimation, and so on. Through these processes, we evaluated the possibility for the practical application of the preliminary design model.

Prediction of creep in concrete using genetic programming hybridized with ANN

  • Hodhod, Osama A.;Said, Tamer E.;Ataya, Abdulaziz M.
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.513-523
    • /
    • 2018
  • Time dependent strain due to creep is a significant factor in structural design. Multi-gene genetic programming (MGGP) and artificial neural network (ANN) are used to develop two models for prediction of creep compliance in concrete. The first model was developed by MGGP technique and the second model by hybridized MGGP-ANN. In the MGGP-ANN, the ANN is working in parallel with MGGP to predict errors in MGGP model. A total of 187 experimental data sets that contain 4242 data points are filtered from the NU-ITI database. These data are used in developing the MGGP and MGGP-ANN models. These models contain six input variables which are: average compressive strength at 28 days, relative humidity, volume to surface ratio, cement type, age at start of loading and age at the creep measurement. Practical equation based on MGGP was developed. A parametric study carried out with a group of hypothetical data generated among the range of data used to check the generalization ability of MGGP and MGGP-ANN models. To confirm validity of MGGP and MGGP-ANN models; two creep prediction code models (ACI209 and CEB), two empirical models (B3 and GL 2000) are used to compare their results with NU-ITI database.

Developing a new mutation operator to solve the RC deep beam problems by aid of genetic algorithm

  • Kaya, Mustafa
    • Computers and Concrete
    • /
    • v.22 no.5
    • /
    • pp.493-500
    • /
    • 2018
  • Due to the fact that the ratio of their height to their openings is very large compared to normal beams, there are difficulties in the design and analysis of deep beams, which differ in behavior. In this study, the optimum horizontal and vertical reinforcement diameters of 5 different beams were determined by using genetic algorithms (GA) due to the openness/height ratio (L/h), loading condition and the presence of spaces in the body. In this study, the effect of different mutation operators and improved double times sensitive mutation (DTM) operator on GA's performance was investigated. In the study following random mutation (RM), boundary mutation (BM), non-uniform random mutation (NRM), Makinen, Periaux and Toivanen (MPT) mutation, power mutation (PM), polynomial mutation (PNM), and developed DTM mutation operators were applied to five deep beam problems were used to determine the minimum reinforcement diameter. The fitness values obtained using developed DTM mutation operator was higher than obtained from existing mutation operators. Moreover; obtained reinforcement weight of the deep beams using the developed DTM mutation operator lower than obtained from the existing mutation operators. As a result of the analyzes, the highest fitness value was obtained from the applied double times sensitive mutation (DTM) operator. In addition, it was found that this study, which was carried out using GAs, contributed to the solution of the problems experienced in the design of deep beams.

Generalized Solution Procedure for Slope Stability Analysis Using Genetic Algorithm (유전자 알고리즘을 이용한 사면안정해석의 일반화 해법)

  • Shin, Eun-Chul;Patra, Chittaranjan R.;Pradhan, R.
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.3
    • /
    • pp.5-11
    • /
    • 2008
  • This paper pertains to the incorporation of a genetic algorithm methodology for determining the critical slip surface and the corresponding factor of safety of soil slopes using inclined slice method. The analysis is formulated as a constrained optimization problem to solve the nonlinear equilibrium equations and finding the factor of safety and the critical slip surface. The sensitivity of GA optimization method is presented in terms of development of failure surface. Example problem is presented to demonstrate the efficiencies of the genetic algorithm approach. The results obtained by this method are compared with other traditional optimization technique.

Quay Crane Scheduling Considering the Workload of Yard Blocks in an Automated Container Terminal (장치장 블록의 작업부하를 고려한 안벽크레인 작업계획)

  • Lee, Seung-Hwan;Choe, Ri;Park, Tae-Jin;Kim, Kap-Hwan;Ryu, Kwang-Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.4
    • /
    • pp.103-116
    • /
    • 2008
  • This paper proposes quay crane (QC) scheduling algorithms that determine the working sequence of QCs over ship bays in a container vessel in automated container terminals. We propose two scheduling algorithms that examine the distribution of export containers in the stacking yard and determine the sequence of ship bays to balance the workload distribution among the yard blocks. One of the algorithms is a simple heuristic algorithm which dynamically selects the next ship bay based on the entropy of workloads among yard blocks whenever a QC finishes loading containers at a ship bay and the other uses genetic algorithm to search the optimal sequence of ship bays. To evaluate the fitness of each chromosome in the genetic algorithm, we have devised a method that is able to calculate an approximation of loading time of container vessels considering the workloads among yard blocks. Simulation experiments have been carried out to compare the efficiency of the proposed algorithms. The results show that our QC scheduling algorithms are efficient in reducing the turn-around time of container vessels.

  • PDF

Crane Scheduling Considering Tenant Service Time in a Rail-Road Transshipment Yard : Case of the Uiwang ICD (철도-육상트럭 환적지에서의 입주사 작업시간을 고려한 크레인 적하작업 스케줄링 : 의왕ICD 사례)

  • Kim, Kwang-Tae;Kim, Hyo-Jeong;Son, Dong-Hoon;Jang, Jin-Myeong;Kim, Hwa-Joong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.238-247
    • /
    • 2018
  • This paper considers the problem of scheduling loading and unloading operations of a crane in a railway terminal motivated from rail-road container transshipment operations at Uiwang Inland Container Depot (ICD). Unlike previous studies only considering the total handling time of containers, this paper considers a bi-criteria objective of minimizing the weighted sum of the total handling time and tenant service time. The tenant service time is an important criterion in terms of terminal tenants who are private logistics companies in charge of moving containers from/to the terminal using their trucks. In the rail-road container shipment yard, the tenant service time of a tenant can be defined by a time difference between beginning and finishing loading and unloading operations of a crane. Thus, finding a set of sequences and time of the crane operations becomes a crucial decision issue in the problem. The problem is formulated as a nonlinear program which is improved by linearizing a nonlinear constraint in the model. This paper develops a genetic algorithm to solve the problem and performs a case study on the Uiwang ICD terminal. Computational experiment results show that the genetic algorithm shows better performance than commercial optimization solvers. Operational implications in terms of tenants are drawn through sensitivity analyses.

Integrated Genetic Algorithm with Direct Search for Optimum Design of RC Frames (직접탐색을 이용한 유전자 알고리즘에 의한 RC 프레임의 최적설계)

  • Kwak, Hyo-Gyoung;Kim, Ji-Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.21-34
    • /
    • 2008
  • An improved optimum design method for reinforced concrete frames using integrated genetic algorithm(GA) with direct search method is presented. First, various sets of initially assumed sections are generated using GA, and then, for each resultant design member force condition optimum solutions are selected by regression analysis and direct search within pre-determined design section database. In advance, global optimum solutions are selected from accumulated results through several generations. Proposed algorithm makes up for the weak point in standard genetic algorithm(GA), that is, low efficiency in convergence causing the deterioration of quality of final solutions and shows fast convergence together with improved results. Moreover, for the purpose of elevating economic efficiency, optimum design based on the nonlinear structural analysis is performed and therefore makes all members resist against given loading condition with the nearest resisting capacity. The investigation for the effectiveness of the introduced design procedure is conducted through correlation study for example structures.

Screening, Cloning, Expression and Characterization of New Alkaline Trehalose Synthase from Pseudomonas monteilii and Its Application for Trehalose Production

  • Trakarnpaiboon, Srisakul;Bunterngsook, Benjarat;Wansuksriand, Rungtiva;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1455-1464
    • /
    • 2021
  • Trehalose is a non-reducing disaccharide in increasing demand for applications in food, nutraceutical, and pharmaceutical industries. Single-step trehalose production by trehalose synthase (TreS) using maltose as a starting material is a promising alternative process for industrial application due to its simplicity and cost advantage. Pseudomonas monteilii TBRC 1196 was identified using the developed screening method as a potent strain for TreS production. The TreS gene from P. monteilii TBRC 1196 was first cloned and expressed in Escherichia coli. Purified recombinant trehalose synthase (PmTreS) had a molecular weight of 76 kDa and showed optimal pH and temperature at 9.0 and 40℃, respectively. The enzyme exhibited >90% residual activity under mesophilic condition under a broad pH range of 7-10 for 6 h. Maximum trehalose yield by PmTreS was 68.1% with low yield of glucose (4%) as a byproduct under optimal conditions, equivalent to productivity of 4.5 g/l/h using enzyme loading of 2 mg/g substrate and high concentration maltose solution (100 g/l) in a lab-scale bioreactor. The enzyme represents a potent biocatalyst for energy-saving trehalose production with potential for inhibiting microbial contamination by alkaline condition.