• Title/Summary/Keyword: Genetic Progress

Search Result 225, Processing Time 0.027 seconds

An Implementation of the Controller Design System Using the Runge Kutta Method and Genetic Algorithms (런지-커타 기법과 유전자 알고리즘을 이용한 제어기 설계 시스템의 구현)

  • Lee, Chung-Ki;Kang, Hwan-Il;Yu, Il-Kyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.259-259
    • /
    • 2003
  • Genetic algorithms using a Process of genetic evolution of an organism are appropriate for hard problems that have not been solved by any deterministic method. Up to now, the controller design method has been made with the frequency dependent specification but the design method with the time specification has gotten little progress. In this paper, we study the controller design to satisfy the performance of a plant using the generalized Manabe standard form. When dealing with a controller design in the case of two parameter configurations, there are some situations that neither a known pseudo inverse technique nor the inverse method can be applicable. In this case, we propose two methods of designing a controller by the gradient algorithm and the new pseudo inverse method so that the desired closed polynomials are either equalized to or approximated to the designed polynomial. Design methods of the proposed controller are implemented in Java.

Clinical Findings and Gene Analysis of BH4 Responsive PKU Patients in Korea (BH4 responsive PKU 환자들의 임상적 특성과 유전자분석)

  • Rhee, Minhee;Kim, Jiwon;Lee, Jeongho;Lee, Dong Hwan
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.13 no.2
    • /
    • pp.104-110
    • /
    • 2013
  • Purpose: Phenylketonuria (PKU) is the first inherited metabolic disease of which treatment is known. We performed this study to find out clinical symptoms and prognosis of tetrahydrobiopterin (BH4) responsive PKU patients and genetic relation. Methods: Clinical, biochemical, genetic analysis were done retrospectively in 23 patients diagnosed BH4 responsive PKU in Soonchunhyang University Hospital from March 2000 to September 2012. Results: Patients were classified to mild hyperphenylalaninemia and mild phenylketonuria with initial plasma phenylalanine level below 20 mg/dL. After BH4 loading, blood phenylalanine decrease level ranged between 37% and 99%. Initial treatment with low phenylalanine formula or BH4 was started before 2 month after birth except 2 patients. And one of them resulted in developmental delay in language and social activity. The others showed satisfactory progress without developmental delay. In genetic analysis, of 46 allele, R241C allele mutation was identified most commonly (41%). R241C/A259T, R241C/R243Q, R241C/V388M, R241C/T278I was detected in 5 (21.7%), 3 (13%), 2 (8%), 2 (8%) patients, respectively. Conclusion: R241C mutation was detected most frequently in this study group and R243Q mutation which is known to be prevalent in Korean PKU patients was found in 4 patients (8.6%). Early diagnosis and treatment is important in PKU patients.

  • PDF

How Chromosome Mis-Segregation Leads to Cancer: Lessons from BubR1 Mouse Models

  • Lee, Hyunsook
    • Molecules and Cells
    • /
    • v.37 no.10
    • /
    • pp.713-718
    • /
    • 2014
  • Alteration in chromosome numbers and structures instigate and foster massive genetic instability. As Boveri has seen a hundred years ago (Boveri, 1914; 2008), aneuploidy is hall-mark of many cancers. However, whether aneuploidy is the cause or the result of cancer is still at debate. The molecular mechanism behind aneuploidy includes the chromosome mis-segregation in mitosis by the compromise of spindle assembly checkpoint (SAC). SAC is an elaborate network of proteins, which monitor that all chromosomes are bipolarly attached with the spindles. Therefore, the weakening of the SAC is the major reason for chromosome number instability, while complete compromise of SAC results in detrimental death, exemplified in natural abortion in embryonic stage. Here, I will review on the recent progress on the understanding of chromosome missegregation and cancer, based on the comparison of different mouse models of BubR1, the core component of SAC.

Mucopolysaccharidosis Type III: review and recent therapies under investigation

  • Lee, Jun Hwa
    • Journal of Interdisciplinary Genomics
    • /
    • v.2 no.2
    • /
    • pp.20-25
    • /
    • 2020
  • Mucopolysaccharidosis type III (MPS III or Sanfilippo syndrome) is a multisystem lysosomal storage disease that is inherited in an autosomal recessive manner. It consists of four subtypes (MPS IIIA, B, C, and D), each characterized by the deficiency of different enzymes that catalyze the metabolism of the glycosaminoglycan heparan sulfate at the lysosomal level. The typical clinical manifestation of MPS III includes progressive central nervous system (CNS) degeneration with accompanying systemic manifestations. Disease onset is typically before the age of ten years and death usually occurs in the second or third decade due to neurological regression or respiratory tract infections. However, there is currently no treatment for CNS symptoms in patients with MPS III. Invasive and non-invasive techniques that allow drugs to pass through the blood brain barrier and reach the CNS are being tested and have proven effective. In addition, the application of genistein treatment as a substrate reduction therapy is in progress.

Progress in Transgenic Cloned Pig for Xenotransplantation

  • Park, Kwang-Wook
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.9-19
    • /
    • 2003
  • Pig organ is thought to be the most suitable nonhuman organ for xenotransplanstation. However, one of the major constraints to using pig organs for xenotransplantation is human natural antibody-mediated hyperacute rejection (HAR). Elimination of a(1,3) galactosyltransferase (GGTA1) from the pig is expected to be a solution to the problem of hyperacute rejection. Many efforts have made characterization of GGTA1 in structure and function, improvement in the technique of DNA transfection of somatic cells and advancement of the pig NT, a specific modification has been made to one copy of the GGTAl gene by Missouri group in 2002 To date because homozygousity of the genetic modification has been achieved in this gene, the role of gala(1,3) gal specific natural antibody in HAR and the efficacy of xenotransplantation in a nonhuman primate model will be addressed. Of other genes are found to be involved in rejection of pig donors by primates, the technology will be available to modify those genes so that rejection can be overcome.

  • PDF

The Natural Killer Cell Response to HCV Infection

  • Ahlenstiel, Golo
    • IMMUNE NETWORK
    • /
    • v.13 no.5
    • /
    • pp.168-176
    • /
    • 2013
  • In the last few years major progress has been made in better understanding the role of natural killer (NK) cells in hepatitis C virus (HCV) infection. This includes multiple pathways by which HCV impairs or limits NK cells activation. Based on current genetic and functional data, a picture is emerging where only a rapid and strong NK cell response early on during infection which results in strong T cell responses and possible subsequent clearance, whereas chronic HCV infection is associated with dysfunctional or biased NK cells phenotypes. The hallmark of this NK cell dysfunction is persistent activation promoting ongoing hepatitis and hepatocyte damage, while being unable to clear HCV due to impaired IFN-${\gamma}$ responses. Furthermore, some data suggests certain chronically activated subsets that are $NKp46^{high}$ may be particularly active against hepatic stellate cells, a key player in hepatic fibrogenesis. Finally, the role of NK cells during HCV therapy, HCV recurrence after liver transplant and hepatocellular carcinoma are discussed.

Marine Microalgal Transgenesis: Applications to Biotechnology and Human Functional Foods

  • Kim, Young Tae
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.34-39
    • /
    • 2006
  • Molecular biology and microalgal biotechnology have the potential to play a major role in improving the production efficiency of a vast variety of products including functional foods, industrial chemicals, compounds with therapeutic applications and bioremediation solutions from a virtually untapped source. Microalgae are a source of natural products and have been recently studied for biotechnological applications. Efficient genetic transformation systems in microalgae are necessary to enhance their potential to be used for human health. A microalga such as Chlarella is a eukaryotic organism sharing its metabolic pathways with higher plants. This microalga is capable of expressing, glycosylating, and correctly processing proteins which normally undergo post-translational modification. Moreover, it can be cultured inexpensively because it requires only limited amount of sunlight and carbon dioxide as energy sources. Because of these advantages, Chlarella may be of great potential interest in biotechnology as a good candidate for bioreactor in the production of pharmaceutical and industrial compounds for human functional foods. Here, we briefly discuss recent progress in microalgal transgenesis that has utilized molecular biology to produce functional proteins and bioactive compounds.

  • PDF

A review of degenerative changes in the intervertebral disc (추간원판의 퇴행성 변화에 관한 고찰)

  • Kim Seung-hwan;Park Rae-Joon
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.2
    • /
    • pp.52-66
    • /
    • 2003
  • The intervertebral disc is a cartilaginous structure that resembles articular cartilage in its biochemistry, but morphologically it is clearly different. It shows degenerative and ageing changes earlier than does any other connective tissue in the body, It is believed to be important clinically because there is an association of disc degeneration with back pain. Degenerative changes in the intervertebral disc are thought to develop as aging, mechanical stress and metabolic factors. Genetic factors may also play a part in the onset or progress of the degenerative process. They, together with environmental factors, may act as determinants of the structural characteristics of the intervertebral disc and produce a tendency to generation, In this short review we outline the morphplogy and biochemistry of normal intervertebral disc and the changes that arise during degeneration. Therefore this study will review degeneration of intervertebral disc, so we will have knowledge about low back pain associated with degenerative change in the intervertebral disc.

  • PDF

Single Nucleotide Polymorphisms (SNPs) for Advanced Genomic Research in Sericulture

  • Vijayan, Kunjupillai
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.19 no.1
    • /
    • pp.143-154
    • /
    • 2009
  • Single nucleotide polymorphisms (SNPs) are the most frequent form of variation in the genome of any organism. Owing to their greater abundance, they are considered useful for identifying cultivars, construction of higher density linkage maps, and detection of genes (QTLs) associated with complex agronomic traits and diseases. Although, SNPs have been used recently for constructing a high density genetic map in silkworm and a set of 118 SNPs have been identified in tasar silkworms, not much progress has been made in sericulture to utilize the vast potential of SNPs. Thus, this review mainly focuses on some of the important methods of SNP discovery, validation and genotyping. Emphasis has also been given to the possible uses of SNP genotyping in the improvement of silkworms and their host plants.

Tumor Therapy Applying Membrane-bound Form of Cytokines

  • Kim, Young-Sang
    • IMMUNE NETWORK
    • /
    • v.9 no.5
    • /
    • pp.158-168
    • /
    • 2009
  • Tumor therapy using cytokines has been developed for last two decades. Several recombinant cytokines and tumor cell vaccines produced by cytokine gene transfer have been in clinical trials, but several side effects hamper routine clinical applications. Many cytokines are originally expressed as membrane-bound form and then processed to secretory form exerting paracrine effects. Though functional differences of these two types of cytokines are elusive yet, the membrane-bound form of cytokine may exert its effects on restricted target cells as a juxtacrine, which are in physical contacts. With the efforts to improve antitumor activities of cytokines in cancer patients, developing new strategies to alleviate life-threatening side effects became an inevitable goal of tumor immunologists. Among these, tumor cell vaccines expressing cytokines as membrane-bound form on tumor cell surface have been developed by genetic engineering techniques with the hope of selective stimulation of the target cells that are in cell-to-cell contacts. In this review, recent progress of tumor cell vaccines expressing membrane-bound form of cytokines will be discussed.