DOI QR코드

DOI QR Code

The Natural Killer Cell Response to HCV Infection

  • Ahlenstiel, Golo (Storr Liver Unit, Westmead Millennium Institute and Westmead Hospital, University of Sydney)
  • Received : 2013.08.21
  • Accepted : 2013.09.03
  • Published : 2013.10.31

Abstract

In the last few years major progress has been made in better understanding the role of natural killer (NK) cells in hepatitis C virus (HCV) infection. This includes multiple pathways by which HCV impairs or limits NK cells activation. Based on current genetic and functional data, a picture is emerging where only a rapid and strong NK cell response early on during infection which results in strong T cell responses and possible subsequent clearance, whereas chronic HCV infection is associated with dysfunctional or biased NK cells phenotypes. The hallmark of this NK cell dysfunction is persistent activation promoting ongoing hepatitis and hepatocyte damage, while being unable to clear HCV due to impaired IFN-${\gamma}$ responses. Furthermore, some data suggests certain chronically activated subsets that are $NKp46^{high}$ may be particularly active against hepatic stellate cells, a key player in hepatic fibrogenesis. Finally, the role of NK cells during HCV therapy, HCV recurrence after liver transplant and hepatocellular carcinoma are discussed.

Keywords

References

  1. WHO. Hepatitis C. Fact Sheet No. 164. Updated July 2013. http://www.who.int/mediacentre/factsheets/fs164/en/.
  2. Hoofnagle, J. H. 2002. Course and outcome of hepatitis C. Hepatology 36: S21-29.
  3. Burra, P. 2009. Hepatitis C. Semin. Liver Dis. 29: 53-65. https://doi.org/10.1055/s-0029-1192055
  4. NIH office of the director. 2002. NIH consensus statement on management of hepatitis C. NIH Consens. State. Sci. Statements 19: 1-46.
  5. Feld, J. J. and J. H. Hoofnagle. 2005. Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature 436: 967-972. https://doi.org/10.1038/nature04082
  6. Jacobson, I. M., J. G. McHutchison, G. Dusheiko, A. M. Di Bisceglie, K. R. Reddy, N. H. Bzowej, P. Marcellin, A. J. Muir, P. Ferenci, R. Flisiak, J. George, M. Rizzetto, D. Shouval, R. Sola, R. A. Terg, E. M. Yoshida, N. Adda, L. Bengtsson, A. J. Sankoh, T. L. Kieffer, S. George, R. S. Kauffman, and S. Zeuzem. 2011. Telaprevir for previously untreated chronic hepatitis C virus infection. N. Engl. J. Med. 364: 2405-2416. https://doi.org/10.1056/NEJMoa1012912
  7. Poordad, F., J. McCone, Jr., B. R. Bacon, S. Bruno, M. P. Manns, M. S. Sulkowski, I. M. Jacobson, K. R. Reddy, Z. D. Goodman, N. Boparai, M. J. DiNubile, V. Sniukiene, C. A. Brass, J. K. Albrecht, and J. P. Bronowicki. 2011. Boceprevir for untreated chronic HCV genotype 1 infection. N. Engl. J. Med. 364: 1195-1206. https://doi.org/10.1056/NEJMoa1010494
  8. Lee, S. H., T. Miyagi, and C. A. Biron. 2007. Keeping NK cells in highly regulated antiviral warfare. Trends Immunol. 28: 252-259. https://doi.org/10.1016/j.it.2007.04.001
  9. Moretta, L., C. Bottino, D. Pende, M. C. Mingari, R. Biassoni, and A. Moretta. 2002. Human natural killer cells: their origin, receptors and function. Eur .J. Immunol. 32: 1205-1211. https://doi.org/10.1002/1521-4141(200205)32:5<1205::AID-IMMU1205>3.0.CO;2-Y
  10. Hu, P. F., L. E. Hultin, P. Hultin, M. A. Hausner, K. Hirji, A. Jewett, B. Bonavida, R. Detels, and J. V. Giorgi. 1995. Natural killer cell immunodeficiency in HIV disease is manifest by profoundly decreased numbers of CD16+CD56+ cells and expansion of a population of CD16dimCD56- cells with low lytic activity. J. Acquir Immune Defic. Syndr. Hum. Retrovirol.10: 331-440.
  11. Mavilio, D., G. Lombardo, J. Benjamin, D. Kim, D. Follman, E. Marcenaro, M. A. O'Shea, A. Kinter, C. Kovacs, A. Moretta, and A. S. Fauci. 2005 Characterization of CD56-/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc. Natl. Acad. Sci. USA 102: 2886-2891. https://doi.org/10.1073/pnas.0409872102
  12. Ljunggren, H. G. and K. Karre. 1990. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol Today. 11: 237-244. https://doi.org/10.1016/0167-5699(90)90097-S
  13. Cantoni, C., C. Bottino, M. Vitale, A. Pessino, R. Augugliaro, A. Malaspina, S. Parolini, L. Moretta, A. Moretta, and R. Biassoni. 1999. NKp44, a triggering receptor involved in tumor cell lysis by activated human natural killer cells, is a nov el member of the immunoglobulin superfamily. J. Exp. Med. 189: 787-796. https://doi.org/10.1084/jem.189.5.787
  14. Hata, K., X. R. Zhang, S. Iwatsuki, D. H. Van Thiel, R. B. Herberman, and T. L. Whiteside. 1990. Isolation, phenotyping, and functional analysis of lymphocytes from human liver. Clin. Immunol. Immunopathol. 56: 401-419. https://doi.org/10.1016/0090-1229(90)90160-R
  15. Doherty, D. G. and C. O'Farrelly. 2000. Innate and adaptive lymphoid cells in the human liver. Immunol. Rev. 174: 5-20. https://doi.org/10.1034/j.1600-0528.2002.017416.x
  16. Crotta, S., A. Stilla, A. Wack, A. D'Andrea, S. Nuti, U. D'Oro, M. Mosca, F. Filliponi, R. M. Brunetto, F. Bonino, S. Abrignani, and N. M. Valiante. 2002. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J. Exp. Med. 195: 35-41. https://doi.org/10.1084/jem.20011124
  17. Tseng, C. T. and G. R. Klimpel. 2002. Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J. Exp. Med. 195: 43-49. https://doi.org/10.1084/jem.20011145
  18. Crotta, S., M. Brazzoli, D. Piccioli, N. M. Valiante, and A. Wack. 2010. Hepatitis C virions subvert natural killer cell activation to generate a cytokine environment permissive for infection. J. Hepatol. 52: 183-190.
  19. Yoon, J. C., M. Shiina, G. Ahlenstiel, and B. Rehermann. 2009. Natural killer cell function is intact after direct exposure to infectious hepatitis C virions. Hepatology 49: 12-21. https://doi.org/10.1002/hep.22624
  20. Nattermann, J., H. D. Nischalke, V. Hofmeister, G. Ahlenstiel, H. Zimmermann, L. Leifeld, E. H. Weiss, T. Sauerbruch, and U. Spengler. 2005. The HLA-A2 restricted T cell epitope HCV core 35-44 stabilizes HLA-E expression and inhibits cytolysis mediated by natural killer cells. Am. J. Pathol. 166: 443-453. https://doi.org/10.1016/S0002-9440(10)62267-5
  21. Larkin, J., A. Bost, J. I. Glass, and S. L. Tan. 2006. Cytokine-activated natural killer cells exert direct killing of hepatoma cells harboring hepatitis C virus replicons. J. Interferon Cytokine Res. 26: 854-865. https://doi.org/10.1089/jir.2006.26.854
  22. Yoon, J. C., J. B. Lim, J. H. Park, and J. M. Lee. 2011. Cell-to-cell contact with hepatitis C virus-infected cells reduces functional capacity of natural killer cells. J. Virol. 85: 12557-12569. https://doi.org/10.1128/JVI.00838-11
  23. Wang, J. M., Y. Q. Cheng, L. Shi, R. S. Ying, X. Y. Wu, G. Y. Li, J. P. Moorman, and Z. Q. Yao. 2013. KLRG1 negatively regulates natural killer (NK) cell functions through Akt pathway in individuals with chronic hepatitis C. J. Virol. 87: 11626-11636. https://doi.org/10.1128/JVI.01515-13
  24. Holder, K. A., S. N. Stapleton, M. E. Gallant, R. S. Russell, and M. D. Grant. 2013. Hepatitis C Virus-Infected Cells Downregulate NKp30 and Inhibit Ex Vivo NK Cell Functions. J. Immunol. 191: 3308-3318. https://doi.org/10.4049/jimmunol.1300164
  25. Nattermann, J., G. Feldmann, G. Ahlenstiel, B. Langhans, T. Sauerbruch, and U. Spengler. 2006. Surface expression and cytolytic function of natural killer cell receptors is altered in chronic hepatitis C. Gut. 55: 869-877. https://doi.org/10.1136/gut.2005.076463
  26. Alter, G., S. Jost, S. Rihn, L. L. Reyor, B. E. Nolan, M. Ghebremichael, R. Bosch, M. Altfeld, and G. M. Lauer. 2011. Reduced frequencies of NKp30+NKp46+, CD161+, and NKG2D+ NK cells in acute HCV infection may predict viral clearance. J. Hepatol. 55: 278-288. https://doi.org/10.1016/j.jhep.2010.11.030
  27. Golden-Mason, L., L. Madrigal-Estebas, E. McGrath, M. J. Conroy, E. J. Ryan, J. E. Hegarty, C. O'Farrelly, and D. G. Doherty. 2008. Altered natural killer cell subset distributions in resolved and persistent hepatitis C virus infection following single source exposure. Gut. 57: 1121-1128. https://doi.org/10.1136/gut.2007.130963
  28. De Maria, A., M. Fogli, S. Mazza, M. Basso, A. Picciotto, P. Costa, S. Congia, M. C. Mingari, and L. Moretta. 2007. Increased natural cytotoxicity receptor expression and relevant IL-10 production in NK cells from chronically infected viremic HCV patients. Eur. J. Immunol. 37: 445-455. https://doi.org/10.1002/eji.200635989
  29. Oliviero, B., S. Varchetta, E. Paudice, G. Michelone, M. Zaramella, D. Mavilio, F. De Filippi, S. Bruno, and M. U. Mondelli. 2009. Natural killer cell functional dichotomy in chronic hepatitis B and chronic hepatitis C virus infections. Gastroenterology 137: 1151-1160. https://doi.org/10.1053/j.gastro.2009.05.047
  30. Stegmann, K. A., N. K. Bjorkstrom, S. Ciesek, S. Lunemann, J. Jaroszewicz, J. Wiegand, P. Malinski, L. B. Dustin, C. M. Rice, M. P. Manns, T. Pietschmann, M. Cornberg, H. G. Ljunggren, and H. Wedemeyer. 2012. Interferon alpha-stimulated natural killer cells from patients with acute hepatitis C virus (HCV) infection recognize HCV-infected and uninfected hepatoma cells via DNAX accessory molecule-1. J. Infect. Dis. 205: 1351-1362. https://doi.org/10.1093/infdis/jis210
  31. Zhang, S., B. Saha, K. Kodys, and G. Szabo. 2013. IFN-gamma production by human natural killer cells in response to HCV-infected hepatoma cells is dependent on accessory cells. J. Hepatol. 59: 442-449. https://doi.org/10.1016/j.jhep.2013.04.022
  32. Sene, D., F. Levasseur, M. Abel, M. Lambert, X. Camous, C. Hernandez, V. Pene, A. R. Rosenberg, E. Jouvin-Marche, P. N. Marche, P. Cacoub, and S. Caillat-Zucman. 2010. Hepatitis C virus (HCV) evades NKG2D-dependent NK cell responses through NS5A-mediated imbalance of inflammatory cytokines. PLoS Pathog. 6: e1001184.s https://doi.org/10.1371/journal.ppat.1001184
  33. Suppiah, V., S. Gaudieri, N. J. Armstrong, K. S. O'Connor, T. Berg, M. Weltman, M. L. Abate, U. Spengler, M. Bassendine, G. J. Dore, W. L. Irving, E. Powell, M. Hellard, S. Riordan, G. Matthews, D. Sheridan, J. Nattermann, A. Smedile, T. Muller, E. Hammond, D. Dunn, F. Negro, P. Y. Bochud, S. Mallal, G. Ahlenstiel, G. J. Stewart, J. George, and D. R. Booth. 2011. IL28B, HLA-C, and KIR variants additively predict response to therapy in chronic hepatitis C virus infection in a European Cohort: a cross-sectional study. PLoS Med. 8: e1001092. https://doi.org/10.1371/journal.pmed.1001092
  34. Knapp, S., U. Warshow, D. Hegazy, L. Brackenbury, I. N. Guha, A. Fowell, A. M. Little, G. J. Alexander, W. M. Rosenberg, M. E. Cramp, and S. I. Khakoo. 2010. Consistent beneficial effects of killer cell immunoglobulin-like receptor 2DL3 and group 1 human leukocyte antigen-C following exposure to hepatitis C virus. Hepatology 51: 1168-1175. https://doi.org/10.1002/hep.23477
  35. Khakoo, S. I., C. L. Thio, M. P. Martin, C. R. Brooks, X. Gao, J. Astemborski, J. Cheng, J. J. Goedert, D. Vlahov, M. Hilgartner, S. Cox, A. M. Little, G. J. Alexander, M. E. Cramp, S. J. O'Brien, W. M. Rosenberg, D. L. Thomas, M. Carrington. 2004. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305: 872-874. https://doi.org/10.1126/science.1097670
  36. Knapp, S., U. Warshow, K. M. Ho, D. Hegazy, A. M. Little, A. Fowell, G. Alexander, M. Thursz, M. Cramp, and S. I. Khakoo. 2011. A polymorphism in IL28B distinguishes exposed, uninfected individuals from spontaneous resolvers of HCV infection. Gastroenterology 141: 320-325. https://doi.org/10.1053/j.gastro.2011.04.005
  37. Thomas, D. L., C. L. Thio, M. P. Martin, Y. Qi, D. Ge, C. O'Huigin, J. Kidd, K. Kidd, S. I. Khakoo, G. Alexander, J. J. Goedert, G. D. Kirk, S. M. Donfield, H. R. Rosen, L. H. Tobler, M. P. Busch, J. G. McHutchison, D. B. Goldstein, and M. Carrington. 2009. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461: 798-801. https://doi.org/10.1038/nature08463
  38. Grebely, J., K. Petoumenos, M. Hellard, G. V. Matthews, V. Suppiah, T. Applegate, B. Yeung, P. Marks, W. Rawlinson, A. R. Lloyd, D. Booth, J. M. Kaldor, J. George, and G. J. Dore. 2010. Potential role for interleukin-28B genotype in treatment decision-making in recent hepatitis C virus infection. Hepatology 52: 1216-1224. https://doi.org/10.1002/hep.23850
  39. Suppiah, V., M. Moldovan, G. Ahlenstiel, T. Berg, M. Weltman, M. L. Abate, M. Bassendine, U. Spengler, G. J. Dore, E. Powell, S. Riordan, D. Sheridan, A. Smedile, V. Fragomeli, T. Muller, M. Bahlo, G. J. Stewart, D. R. Booth, and J. George. 2009. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat. Genet. 41: 1100-1104. https://doi.org/10.1038/ng.447
  40. Tanaka, Y., N. Nishida, M. Sugiyama, M. Kurosaki, K. Matsuura, N. Sakamoto, M. Nakagawa, M. Korenaga, K. Hino, S. Hige, Y. Ito, E. Mita, E. Tanaka, S. Mochida, Y. Murawaki, M. Honda, A. Sakai, Y. Hiasa, S. Nishiguchi, A. Koike, I. Sakaida, M. Imamura, K. Ito, K. Yano, N. Masaki, F. Sugauchi, N. Izumi, K. Tokunaga, and M. Mizokami. 2009. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat. Genet. 41: 1105-1109. https://doi.org/10.1038/ng.449
  41. Ge, D., J. Fellay, A. J. Thompson, J. S. Simon, K. V. Shianna, T. J. Urban, E. L. Heinzen, P. Qiu, A. H. Bertelsen, A. J. Muir, M. Sulkowski, J. G. McHutchison, and D. B. Goldstein. 2009. Genetic variation in IL28B predicts hepatitis C treatment- induced viral clearance. Nature 461: 399-401. https://doi.org/10.1038/nature08309
  42. Herzer, K., C. S. Falk, J. Encke, S. T. Eichhorst, A. Ulsenheimer, B. Seliger, and P. H. Krammer. 2003. Upregulation of major histocompatibility complex class I on liver cells by hepatitis C virus core protein via p53 and TAP1 impairs natural killer cell cytotoxicity. J. Virol. 77: 8299-8309. https://doi.org/10.1128/JVI.77.15.8299-8309.2003
  43. Ahlenstiel, G., M. P. Martin, X. Gao, M. Carrington, and B. Rehermann. 2008. Distinct KIR/HLA compound genotypes affect the kinetics of human antiviral natural killer cell responses. J. Clin. Invest. 118: 1017-1026.
  44. Shin, E. C., U. Seifert, T. Kato, C. M. Rice, S. M. Feinstone, P. M. Kloetzel, and B. Rehermann. 2006. Virus-induced type I IFN stimulates generation of immunoproteasomes at the site of infection. J. Clin. Invest. 116: 3006-3014. https://doi.org/10.1172/JCI29832
  45. Thimme, R., J. Bukh, H. C. Spangenberg, S. Wieland, J. Pemberton, C. Steiger, S. Govindarajan, R. H. Purcell, and F. V. Chisari. 2002. Viral and immunological determinants of hepatitis C virus clearance, persistence, and disease. Proc. Natl. Acad. Sci. USA 99: 15661-15668. https://doi.org/10.1073/pnas.202608299
  46. Guidotti, L. G. and F. V. Chisari. 1996. To kill or to cure: options in host defense against viral infection. Curr. Opin. Immunol. 8: 478-483. https://doi.org/10.1016/S0952-7915(96)80034-3
  47. Naggie, S., A. Osinusi, A. Katsounas, R. Lempicki, E. Herrmann, A. J. Thompson, P. J. Clark, K. Patel, A. J. Muir, J. G. McHutchison, J. F. Schlaak, M. Trippler, B. Shivakumar, H. Masur, M. A. Polis, and S. Kottilil. 2012. Dysregulation of innate immunity in HCV genotype 1 IL28B unfavorable genotype patients: impaired viral kinetics and therapeutic response. Hepatology 56: 444-454. https://doi.org/10.1002/hep.25647
  48. Golden-Mason, L., K. M. Bambha, L. Cheng, C. D. Howell, M. W. Taylor, P. J. Clark, N. Afdhal, and H. R. Rosen. 2011. Natural killer inhibitory receptor expression associated with treatment failure and interleukin-28B genotype in patients with chronic hepatitis C. Hepatology 54: 1559-1569. https://doi.org/10.1002/hep.24556
  49. Amadei, B., S. Urbani, A. Cazaly, P. Fisicaro, A. Zerbini, P. Ahmed, G. Missale, C. Ferrari, and S. I. Khakoo. 2010. Activation of natural killer cells during acute infection with hepatitis C virus. Gastroenterology 138: 1536-1545. https://doi.org/10.1053/j.gastro.2010.01.006
  50. Pelletier, S., C. Drouin, N. Bedard, S. I. Khakoo, J. Bruneau, and N. H. Shoukry. 2010. Increased degranulation of natural killer cells during acute HCV correlates with the magnitude of virus-specific T cell responses. J. Hepatol. 53: 805-816. https://doi.org/10.1016/j.jhep.2010.05.013
  51. Werner, J. M., T. Heller, A. M. Gordon, A. Sheets, A. H. Sherker, E. Kessler, K. S. Bean, M. Stevens, J. Schmitt, and B. Rehermann. 2013. Innate immune responses in hepatitis C virus exposed healthcare workers who do not develop acute infection. Hepatology in press : http://onlinelibrary. wiley.com/doi/10.1002/hep.26353/abstract
  52. Ahlenstiel, G., R. H. Titerence, C. Koh, B. Edlich, J. J. Feld, Y. Rotman, M. G. Ghany, J. H. Hoofnagle, T. J. Liang, T. Heller, and B. Rehermann. 2010. Natural killer cells are polarized toward cytotoxicity in chronic hepatitis C in an interferon- alfa-dependent manner. Gastroenterology 138: 325-335. https://doi.org/10.1053/j.gastro.2009.08.066
  53. Edlich, B., G. Ahlenstiel, A. Z. Azpiroz, J. Stoltzfus, M. Noureddin, E. Serti, J. J. Feld, T. J. Liang, Y. Rotman, and B. Rehermann. 2012. Early changes in interferon signaling define natural killer cell response and refractoriness to interferon- based therapy of hepatitis C patients. Hepatology 55:39-48. https://doi.org/10.1002/hep.24628
  54. Miyagi, T., M. P. Gil, X. Wang, J. Louten, W. M. Chu, and C. A. Biron. 2007. High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells. J. Exp. Med. 204: 2383-2396. https://doi.org/10.1084/jem.20070401
  55. Miyagi, T., T. Takehara, K. Nishio, S. Shimizu, K. Kohga, W. Li, T. Tatsumi, N. Hiramatsu, T. Kanto, and N. Hayashi. 2010. Altered interferon-alpha-signaling in natural killer cells from patients with chronic hepatitis C virus infection. J. Hepatol. 53: 424-430. https://doi.org/10.1016/j.jhep.2010.03.018
  56. Varchetta, S., D. Mele, S. Mantovani, B. Oliviero, E. Cremonesi, S. Ludovisi, G. Michelone, M. Alessiani, R. Rosati, M. Montorsi, and M. U. Mondelli. 2012. Impaired intrahepatic natural killer cell cytotoxic function in chronic hepatitis C virus infection. Hepatology 56: 841-849. https://doi.org/10.1002/hep.25723
  57. Kramer, B., C. Korner, M. Kebschull, A. Glassner, M. Eisenhardt, H. D. Nischalke, M. Alexander, T. Sauerbruch, U. Spengler, and J. Nattermann. 2012. Natural killer p46High expression defines a natural killer cell subset that is potentially involved in control of hepatitis C virus replication and modulation of liver fibrosis. Hepatology 56: 1201-1213.
  58. Pembroke, T., A. Christian, E. Jones, R. K. Hills, E. C. Wang, A. M. Gallimore, and A. Godkin. 2013. The paradox of NKp46+ natural killer cells: drivers of severe hepatitis C virus- induced pathology but in-vivo resistance to interferon alpha treatment. Gut. in press: http://gut.bmj.com/content/ early/2013/05/10/gutjnl-2013-304472.
  59. Golden-Mason, L., A. E. Stone, K. M. Bambha, L. Cheng, and H. R. Rosen. 2012. Race- and gender-related variation in natural killer p46 expression associated with differential anti- hepatitis C virus immunity. Hepatology 56: 1214-1222.
  60. Eisenhardt, M., A. Glassner, B. Kramer, C. Korner, B. Sibbing, P. Kokordelis, H. D. Nischalke, T. Sauerbruch, U. Spengler, and J. Nattermann. 2012. The CXCR3(+)CD56Bright phenotype characterizes a distinct NK cell subset with anti-fibrotic potential that shows dys-regulated activity in hepatitis C. PLoS. One 7: e38846. https://doi.org/10.1371/journal.pone.0038846
  61. Biron, C. A., K. B. Nguyen, G. C. Pien, L. P. Cousens, and T. P. Salazar-Mather. 1999. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17: 189-220. https://doi.org/10.1146/annurev.immunol.17.1.189
  62. Kaser, A., B. Enrich, O. Ludwiczek, W. Vogel, and H. Tilg. 1999. Interferon-alpha (IFN-alpha) enhances cytotoxicity in healthy volunteers and chronic hepatitis C infection mainly by the perforin pathway. Clin. Exp. Immunol.118: 71-77. https://doi.org/10.1046/j.1365-2249.1999.01020.x
  63. Bozzano, F., A. Picciotto, P. Costa, F. Marras, V. Fazio, I. Hirsch, D. Olive, L. Moretta, and A. De Maria. 2011. Activating NK cell receptor expression/function (NKp30, NKp46, DNAM-1) during chronic viraemic HCV infection is associated with the outcome of combined treatment. Eur. J. Immunol. 41: 2905-2914. https://doi.org/10.1002/eji.201041361
  64. Conry, S. J., Q. Meng, G. Hardy, N. L. Yonkers, J. M. Sugalski, A. Hirsch, P. Davitkov, A. Compan, Y. Falck-Ytter, R. E. Blanton, B. Rodriguez, C. V. Harding, and D. D. Anthony. 2012. Genetically associated CD16(+)56(-) natural killer cell interferon (IFN)-$\alpha$R expression regulates signaling and is implicated in IFN-$\alpha$-induced hepatitis C virus decline. J. Infect. Dis. 205: 1131-1141. https://doi.org/10.1093/infdis/jis027
  65. Ahlenstiel, G., B. Edlich, L. J. Hogdal, Y. Rotman, M. Noureddin, J. J. Feld, L. E. Holz, R. H. Titerence, T. J. Liang, and B. Rehermann. 2011. Early changes in natural killer cell function indicate virologic response to interferon therapy for hepatitis C. Gastroenterology 141: 1231-1239. https://doi.org/10.1053/j.gastro.2011.06.069
  66. Lagging, M., A. I. Romero, J. Westin, G. Norkrans, A. P. Dhillon, J. M. Pawlotsky, S. Zeuzem, M. von Wagner, F. Negro, S. W. Schalm, B. L. Haagmans, C. Ferrari, G. Missale, A. U. Neumann, E. Verheij-Hart, and K. Hellstrand. 2006. IP-10 predicts viral response and therapeutic outcome in difficult- to-treat patients with HCV genotype 1 infection. Hepatology 44: 1617-1625. https://doi.org/10.1002/hep.21407
  67. Oliviero, B., D. Mele, E. Degasperi, A. Aghemo, E. Cremonesi, M. G. Rumi, C. Tinelli, S. Varchetta, S. Mantovani, M. Colombo, and M. U. Mondelli. 2013. Natural killer cell dynamic profile is associated with treatment outcome in patients with chronic HCV infection. J. Hepatol. 59: 38-44. https://doi.org/10.1016/j.jhep.2013.03.003
  68. Dring, M. M., M. H. Morrison, B. P. McSharry, K. J. Guinan, R. Hagan, C. O'Farrelly, and C. M. Gardiner. 2011. Innate immune genes synergize to predict increased risk of chronic disease in hepatitis C virus infection. Proc. Natl. Acad. Sci. USA 108: 5736-5741. https://doi.org/10.1073/pnas.1016358108
  69. Kramer, B., M. Eisenhardt, A. Glassner, C. Korner, T. Sauerbruch, U. Spengler, and J. Nattermann. 2011. Do lambda- IFNs IL28A and IL28B act on human natural killer cells? Proc. Natl. Acad. Sci. USA 108: E519-520 https://doi.org/10.1073/pnas.1108850108
  70. O'Connor, K. S., G. Ahlenstiel, V. Suppiah, S. Schibeci, A. Ong, R. Leung, D . van der Poorten, M. W. Douglas, M. D. Weltman, G. J. Stewart, C. Liddle, J. George, and D. R. Booth. 2013. IFNL3 mediates interaction between innate immune cells: Implications for hepatitis C virus pathogenesis. Innate. Immun. in press: http://ini.sagepub.com/content/ early/2013/09/13/1753425913503385.
  71. Stegmann, K. A., N. K. Bjorkstrom, H. Liermann, S. Ciesek, P. Riese, J. Wiegand, J. Hadem, P. V. Suneetha, J. Jaroszewicz, C. Wang, V. Schlaphoff, P. Fytili, M. Cornberg, M. P. Manns, R. Geffers, T. Pietschmann, C. A. Guzman, H. G. Ljunggren, and H. Wedemeyer. 2010. Interferon alpha induces TRAIL on natural killer cells is associated with control of hepatitis C virus infection. Gastroenterology 138: 1885- 1897. https://doi.org/10.1053/j.gastro.2010.01.051
  72. Gane, E. J., B. C. Portmann, N. V. Naoumov, H. M. Smith, J. A. Underhill, P. T. Donaldson, G. Maertens, and R. Williams. 1996. Long-term outcome of hepatitis C infection after liver transplantation. N. Engl. J. Med. 334: 815-820. https://doi.org/10.1056/NEJM199603283341302
  73. Feray, C., L. Caccamo, G. J. Alexander, B. Ducot, J. Gugenheim, T. Casanovas, C. Loinaz, M. Gigou, P. Burra, L. Barkholt, R. Esteban, T. Bizollon, J. Lerut, A. Minello-Franza, P. H. Bernard, K. Nachbaur, D. Botta- Fridlund, H. Bismuth, S. W. Schalm, and D. Samuel. 1999. European collaborative study on factors influencing outcome after liver transplantation for hepatitis C. European Concerted Action on Viral Hepatitis (EUROHEP) Group. Gastroenterology 117: 619-625. https://doi.org/10.1016/S0016-5085(99)70454-3
  74. de Arias, A. E., S. E. Haworth, L. S. Belli, P. Burra, G. Pinzello, M. Vangeli, E. Minola, M. Guido, P. Boccagni, T. M. De Feo, R. Torelli, M. Cardillo, M. Scalamogna, and F. Poli. 2009. Killer cell immunoglobulin-like receptor genotype and killer cell immunoglobulin-like receptor-human leukocyte antigen C ligand compatibility affect the severity of hepatitis C virus recurrence after liver transplantation. Liver Transpl. 15: 390-399. https://doi.org/10.1002/lt.21673
  75. Legaz, I., M. R. Lopez-Alvarez, J. A. Campillo, M. R. Moya-Quiles, J. M. Bolarin, J. de la Pena, G. Salgado, L. Gimeno, A. M. Garcia-Alonso, M. Muro, M. Miras, C. Alonso, M. R. Alvarez-Lopez, and A. Minguela. 2013. KIR gene mismatching and KIR/C ligands in liver transplantation: consequences for short-term liver allograft injury. Transplantation 95: 1037-1044. https://doi.org/10.1097/TP.0b013e318286486c
  76. Moya-Quiles, M. R., R. Alvarez, M. Miras, J. Gomez-Mateo, M. R. Lopez-Alvarez, I. Marin-Moreno, E. Martinez-Barba, M. P. Sanchez-Mozo, M. Gomez, F. Arnal, F. Sanchez-Bueno, L. A. Marin, A. M. Garcia-Alonso, A. Minguela, M. Muro, P. Parrilla, C. Alonso, and M. R. Alvarez-Lopez. 2007. Impact of recipient HLA-C in liver transplant: a protective effect of HLA-Cw*07on acute rejection. Hum. Immunol. 68: 51-58. https://doi.org/10.1016/j.humimm.2006.10.009
  77. Varchetta, S., B. Oliviero, M. Francesca Donato, F. Agnelli, C. Rigamonti, E. Paudice, E. Arosio, M. Berra, G. Rossi, C. Tinelli, F. F. Fagnoni, M. Colombo, D. Mavilio, and M. U. Mondelli. 2009. Prospective study of natural killer cell phenotype in recurrent hepatitis C virus infection following liver transplantation. J. Hepatol. 50: 314-322.
  78. Trinchieri, G. 1989. Biology of natural killer cells. Adv. Immunol. 47: 187-376. https://doi.org/10.1016/S0065-2776(08)60664-1
  79. Lopez-Vazquez, A., L. Rodrigo, J. Martinez-Borra, R. Perez, M. Rodriguez, J. L. Fdez-Morera, D. Fuentes, S. Rodriguez- Rodero, S. Gonzaez, and C. Lopez-Larrea. 2005. Protective effect of the HLA-Bw4I80 epitope and the killer cell immunoglobulin- like receptor 3DS1 gene against the development of hepatocellular carcinoma in patients with hepatitis C virus infection. J. Infect. Dis. 192: 162-165. https://doi.org/10.1086/430351
  80. Yuen, M. F. and S. Norris. 2001. Expression of inhibitory receptors in natural killer (CD3(-)CD56(+)) cells and CD3(+)CD56(+) cells in the peripheral blood lymphocytes and tumor infiltrating lymphocytes in patients with primary hepatocellular carcinoma. Clin. Immunol. 101: 264-269. https://doi.org/10.1006/clim.2001.5110

Cited by

  1. Lymphocytes Degranulation in Liver in Hepatitis C Virus Carriers Is Associated With IFNL4 Polymorphisms and ALT Levels vol.209, pp.12, 2013, https://doi.org/10.1093/infdis/jiu016
  2. Inflammatory status in human hepatic cirrhosis vol.21, pp.41, 2013, https://doi.org/10.3748/wjg.v21.i41.11522
  3. Patterns of Hepatitis C Virus RNA Levels during Acute Infection: The InC 3 Study vol.10, pp.4, 2013, https://doi.org/10.1371/journal.pone.0122232
  4. Natural killer cells in hepatitis C: Current progress vol.22, pp.4, 2013, https://doi.org/10.3748/wjg.v22.i4.1449
  5. Natural killer cells in highly exposed hepatitis C‐seronegative injecting drug users vol.23, pp.6, 2016, https://doi.org/10.1111/jvh.12511
  6. Effect of ginseng polysaccharides on NK cell cytotoxicity in immunosuppressed mice vol.12, pp.6, 2013, https://doi.org/10.3892/etm.2016.3840
  7. Immunoregulatory Role of NK Cells in Tissue Inflammation and Regeneration vol.8, pp.None, 2017, https://doi.org/10.3389/fimmu.2017.00301
  8. Cytokine-Modulated Natural Killer Cells Differentially Regulate the Activity of the Hepatitis C Virus vol.19, pp.9, 2013, https://doi.org/10.3390/ijms19092771
  9. Molecular Mechanisms Involved in HCC Recurrence after Direct-Acting Antiviral Therapy vol.20, pp.1, 2013, https://doi.org/10.3390/ijms20010049
  10. Restoration of HCV-Specific Immune Responses with Antiviral Therapy: A Case for DAA Treatment in Acute HCV Infection vol.8, pp.4, 2013, https://doi.org/10.3390/cells8040317
  11. Chronic hepatitis C virus infection impairs natural killer cells-dendritic cells cross‐talk: An in vitro culture study vol.65, pp.2, 2013, https://doi.org/10.1111/1348-0421.12858