DOI QR코드

DOI QR Code

Tumor Therapy Applying Membrane-bound Form of Cytokines

  • Kim, Young-Sang (Department of Biochemistry, College of Natural Sciences, Chungnam National University)
  • Received : 2009.10.09
  • Accepted : 2009.10.11
  • Published : 2009.10.31

Abstract

Tumor therapy using cytokines has been developed for last two decades. Several recombinant cytokines and tumor cell vaccines produced by cytokine gene transfer have been in clinical trials, but several side effects hamper routine clinical applications. Many cytokines are originally expressed as membrane-bound form and then processed to secretory form exerting paracrine effects. Though functional differences of these two types of cytokines are elusive yet, the membrane-bound form of cytokine may exert its effects on restricted target cells as a juxtacrine, which are in physical contacts. With the efforts to improve antitumor activities of cytokines in cancer patients, developing new strategies to alleviate life-threatening side effects became an inevitable goal of tumor immunologists. Among these, tumor cell vaccines expressing cytokines as membrane-bound form on tumor cell surface have been developed by genetic engineering techniques with the hope of selective stimulation of the target cells that are in cell-to-cell contacts. In this review, recent progress of tumor cell vaccines expressing membrane-bound form of cytokines will be discussed.

Keywords

References

  1. Tepper RI, Mule JJ: Experimental and clinical studies of cytokine gene-modified tumor cells. Hum Gene Ther 5; 153-164, 1994 https://doi.org/10.1089/hum.1994.5.2-153
  2. Blankenstein T, Rowley DA, Schreiber H: Cytokines and cancer: experimental systems. Curr Opin Immunol 3;694-698, 1991 https://doi.org/10.1016/0952-7915(91)90098-L
  3. Colombo MP, Forni G: Cytokine gene transfer in tumor inhibition and tumor therapy: where are we now? Immunol Today 15;48-51, 1994 https://doi.org/10.1016/0167-5699(94)90131-7
  4. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC: Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A 90;3539-3543, 1993 https://doi.org/10.1073/pnas.90.8.3539
  5. Zier K, Gansbacher B, Salvadori S: Preventing abnormalities in signal transduction of T cells in cancer: the promise of cytokine gene therapy. Immunol Today 17;39-45, 1996 https://doi.org/10.1016/0167-5699(96)80567-6
  6. Gabrilovich DI, Ciernik IF, Carbone DP: Dendritic cells in antitumor immune responses. I. Defective antigen presentation in tumor-bearing hosts. Cell Immunol 170;101-110, 1996 https://doi.org/10.1006/cimm.1996.0139
  7. Kurt-Jones EA, Fiers W, Pober JS: Membrane interleukin 1 induction on human endothelial cells and dermal fibroblasts. J Immunol 139;2317-2324, 1987
  8. Musso T, Calosso L, Zucca M, Millesimo M, Ravarino D, Giovarelli M, Malavasi F, Ponzi AN, Paus R, Bulfone-Paus S: Human monocytes constitutively express membrane-bound, biologically active, and interferon-gamma-upregulated interleukin-15. Blood 93;3531-3539, 1999
  9. Cerretti DP, Wignall J, Anderson D, Tushinski RJ, Gallis BM, Stya M, Gillis S, Urdal DL, Cosman D: Human macrophage-colony stimulating factor: alternative RNA and protein processing from a single gene. Mol Immunol 25; 761-770, 1988 https://doi.org/10.1016/0161-5890(88)90112-5
  10. Lyman SD, James L, Escobar S, Downey H, de Vries P, Brasel K, Stocking K, Beckmann MP, Copeland NG, Cleveland LS, et al: Identification of soluble and membrane-bound isoforms of the murine flt3 ligand generated by alternative splicing of mRNAs. Oncogene 10;149-157, 1995
  11. Kriegler M, Perez C, DeFay K, Albert I, Lu SD: A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 53;45-53, 1988 https://doi.org/10.1016/0092-8674(88)90486-2
  12. Browning JL, Ngam-ek A, Lawton P, DeMarinis J, Tizard R, Chow EP, Hession C, O'Brine-Greco B, Foley SF, Ware CF: Lymphotoxin beta, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell 72;847-856, 1993 https://doi.org/10.1016/0092-8674(93)90574-A
  13. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A, Schall TJ: A new class of membrane-bound chemokine with a CX3C motif. Nature 385; 640-644, 1997 https://doi.org/10.1038/385640a0
  14. Nakamura K, Kitani A, Strober W: Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194;629-644, 2001 https://doi.org/10.1084/jem.194.5.629
  15. Assenmacher M, Scheffold A, Schmitz J, Segura Checa JA, Miltenyi S, Radbruch A: Specific expression of surface interferon-gamma on interferon-gamma producing T cells from mouse and man. Eur J Immunol 26;263-267, 1996 https://doi.org/10.1002/eji.1830260141
  16. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B: An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A 72;3666-3670, 1975 https://doi.org/10.1073/pnas.72.9.3666
  17. Li X, Fan H: Loss of ectodomain shedding due to mutations in the metalloprotease and cysteine-rich/disintegrin domains of the tumor necrosis factor-alpha converting enzyme (TACE). J Biol Chem 279;27365-27375, 2004 https://doi.org/10.1074/jbc.M401690200
  18. Black RA: Tumor necrosis factor-alpha converting enzyme. Int J Biochem Cell Biol 34;1-5, 2002 https://doi.org/10.1016/S1357-2725(01)00097-8
  19. Mueller DL, Jenkins MK, Schwartz RH: Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 7;445-480, 1989 https://doi.org/10.1146/annurev.iy.07.040189.002305
  20. Aversa G, Punnonen J, de Vries JE: The 26-kD transmembrane form of tumor necrosis factor alpha on activated CD4+ T cell clones provides a costimulatory signal for human B cell activation. J Exp Med 177;1575-1585, 1993 https://doi.org/10.1084/jem.177.6.1575
  21. Birkland TP, Sypek JP, Wyler DJ: Soluble TNF and membrane TNF expressed on CD4+ T lymphocytes differ in their ability to activate macrophage antiLeishmanial defense. J Leukoc Biol 51;296-299, 1992 https://doi.org/10.1002/jlb.51.3.296
  22. Mueller C, Corazza N, Trachsel-LOseth S, Eugster HP, Buhler-Jungo M, Brunner T, Imboden MA: Noncleavable transmembrane mouse tumor necrosis factor-alpha (TNFalpha) mediates effects distinct from those of wild-type TNFalpha in vitro and in vivo. J Biol Chem 274;38112-38118, 1999 https://doi.org/10.1074/jbc.274.53.38112
  23. Fichtner I, Lemm M, Becker M, Tanneberger S: Determination of antineoplastic activity and toxicity of tumor necrosis factor (TNF) in animal experiments. Correlation to clinical findings. Neoplasma 37;301-315, 1990
  24. Tracey KJ, Cerami A: Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med 45;491-503, 1994 https://doi.org/10.1146/annurev.med.45.1.491
  25. Marr RA, Addison CL, Snider D, Muller WJ, Gauldie J, Graham FL: Tumour immunotherapy using an adenoviral vector expressing a membrane-bound mutant of murine TNF alpha. Gene Ther 4;1181-1188, 1997 https://doi.org/10.1038/sj.gt.3300528
  26. Li Q, Li L, Shi W, Jiang X, Xu Y, Gong F, Zhou M, Edwards CK 3rd, Li Z: Mechanism of action differences in the antitumor effects of transmembrane and secretory tumor necrosis factor-alpha in vitro and in vivo. Cancer Immunol Immunother 55;1470-1479, 2006 https://doi.org/10.1007/s00262-006-0150-x
  27. Rieger R, Whitacre D, Cantwell MJ, Prussak C, Kipps TJ: Chimeric form of tumor necrosis factor-alpha has enhanced surface expression and antitumor activity. Cancer Gene Ther 16;53-64, 2009 https://doi.org/10.1038/cgt.2008.57
  28. Burgess AW, Camakaris J, Metcalf D: Purification and properties of colony-stimulating factor from mouse lung-conditioned medium. J Biol Chem 252;1998-2003, 1977
  29. Pluznik DH, Sachs L: The induction of clones of normal mast cells by a substance from conditioned medium. Exp Cell Res 43;553-563, 1966 https://doi.org/10.1016/0014-4827(66)90026-7
  30. Witmer-Pack MD, Olivier W, Valinsky J, Schuler G, Steinman RM: Granulocyte/macrophage colony-stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells. J Exp Med 166;1484-1498, 1987 https://doi.org/10.1084/jem.166.5.1484
  31. Mach N, Gillessen S, Wilson SB, Sheehan C, Mihm M, Dranoff G: Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand. Cancer Res 60; 3239-3246, 2000
  32. Soo Hoo W, Lundeen KA, Kohrumel JR, Pham NL, Brostoff SW, Bartholomew RM, Carlo DJ: Tumor cell surface expression of granulocyte-macrophage colony-stimulating factor elicits antitumor immunity and protects from tumor challenge in the P815 mouse mastocytoma tumor model. J Immunol 162;7343-7349, 1999
  33. Yei S, Bartholomew RM, Pezzoli P, Gutierrez A, Gouveia E, Bassett D, Soo Hoo W, Carlo DJ: Novel membrane-bound GM-CSF vaccines for the treatment of cancer: generation and evaluation of mbGM-CSF mouse B16F10 melanoma cell vaccine. Gene Ther 9;1302-1311, 2002 https://doi.org/10.1038/sj.gt.3301803
  34. el-Shami KM, Tzehoval E, Vadai E, Feldman M, Eisenbach L: Induction of antitumor immunity with modified autologous cells expressing membrane-bound murine cytokines. J Interferon Cytokine Res 19;1391-1401, 1999 https://doi.org/10.1089/107999099312858
  35. Ling X, Wang Y, Dietrich MF, Andreeff M, Arlinghaus RB: Vaccination with leukemia cells expressing cell-surface- associated GM-CSF blocks leukemia induction in immunocompetent mice. Oncogene 25;4483-4490, 2006 https://doi.org/10.1038/sj.onc.1209477
  36. Douglass TG, Driggers L, Zhang JG, Hoa N, Delgado C, Williams CC, Dan Q, Sanchez R, Jeffes EW, Wepsic HT, Myers MP, Koths K, Jadus MR: Macrophage colony stimulating factor: not just for macrophages anymore! A gateway into complex biologies. Int Immunopharmacol 8;1354-1376, 2008 https://doi.org/10.1016/j.intimp.2008.04.016
  37. Rosenberg SA, Lotze MT, Yang JC, Topalian SL, Chang AE, Schwartzentruber DJ, Aebersold P, Leitman S, Linehan WM, Seipp CA, et al: Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst 85;622-632, 1993 https://doi.org/10.1093/jnci/85.8.622
  38. Fisher RI, Rosenberg SA, Fyfe G: Long-term survival update for high-dose recombinant interleukin-2 in patients with renal cell carcinoma. Cancer J Sci Am 6 Suppl 1;55-57, 2000
  39. Assier E, Jullien V, Lefort J, Moreau JL, Di Santo JP, Vargaftig BB, Lapa e Silva JR, Theze J: NK cells and polymorphonuclear neutrophils are both critical for IL-2-induced pulmonary vascular leak syndrome. J Immunol 172; 7661-7668, 2004 https://doi.org/10.4049/jimmunol.172.12.7661
  40. Schwartzentruber DJ: Guidelines for the safe administration of high-dose interleukin-2. J Immunother 24;287-293, 2001 https://doi.org/10.1097/00002371-200107000-00004
  41. Chen B, Timiryasova TM, Gridley DS, Andres ML, Dutta-Roy R, Fodor I: Evaluation of cytokine toxicity induced by vaccinia virus-mediated IL-2 and IL-12 antitumour immunotherapy. Cytokine 15;305-314, 2001 https://doi.org/10.1006/cyto.2001.0906
  42. Kammula US, White DE, Rosenberg SA: Trends in the safety of high dose bolus interleukin-2 administration in patients with metastatic cancer. Cancer 83;797-805, 1998 https://doi.org/10.1002/(SICI)1097-0142(19980815)83:4<797::AID-CNCR25>3.0.CO;2-M
  43. Lotze MT, Matory YL, Rayner AA, Ettinghausen SE, Vetto JT, Seipp CA, Rosenberg SA: Clinical effects and toxicity of interleukin-2 in patients with cancer. Cancer 58;2764-2772, 1986 https://doi.org/10.1002/1097-0142(19861215)58:12<2764::AID-CNCR2820581235>3.0.CO;2-Z
  44. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, Steinberg SM, Chen HX, Rosenberg SA: A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349;427-434, 2003 https://doi.org/10.1056/NEJMoa021491
  45. Mizoguchi H, O'Shea JJ, Longo DL, Loeffler CM, McVicar DW, Ochoa AC: Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science 258;1795-1798, 1992 https://doi.org/10.1126/science.1465616
  46. Salvadori S, Gansbacher B, Pizzimenti AM, Zier KS: Abnormal signal transduction by T cells of mice with parental tumors is not seen in mice bearing IL-2-secreting tumors. J Immunol 153;5176-5182, 1994
  47. Fearon ER, Pardoll DM, Itaya T, Golumbek P, Levitsky HI, Simons JW, Karasuyama H, Vogelstein B, Frost P: Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 60;397-403, 1990 https://doi.org/10.1016/0092-8674(90)90591-2
  48. Gansbacher B, Zier K, Daniels B, Cronin K, Bannerji R, Gilboa E: Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med 172;1217-1224, 1990 https://doi.org/10.1084/jem.172.4.1217
  49. Bannerji R, Arroyo CD, Cordon-Cardo C, Gilboa E: The role of IL-2 secreted from genetically modified tumor cells in the establishment of antitumor immunity. J Immunol 152; 2324-2332, 1994
  50. Allione A, Consalvo M, Nanni P, Lollini PL, Cavallo F, Giovarelli M, Forni M, Gulino A, Colombo MP, Dellabona P, et al: Immunizing and curative potential of replicating and nonreplicating murine mammary adenocarcinoma cells engineered with interleukin (IL)-2, IL-4, IL-6, IL-7, IL-10, tumor necrosis factor alpha, granulocyte-macrophage colony-stimulating factor, and gamma-interferon gene or admixed with conventional adjuvants. Cancer Res 54;6022-6026, 1994
  51. Lollini PL, Forni G: Cancer immunoprevention: tracking down persistent tumor antigens. Trends Immunol 24;62-66, 2003 https://doi.org/10.1016/S1471-4906(02)00030-3
  52. Tjuvajev J, Gansbacher B, Desai R, Beattie B, Kaplitt M, Matei C, Koutcher J, Gilboa E, Blasberg R: RG-2 glioma growth attenuation and severe brain edema caused by local production of interleukin-2 and interferon-gamma. Cancer Res 55;1902-1910, 1995
  53. Saparov A, Wagner FH, Zheng R, Oliver JR, Maeda H, Hockett RD, Weaver CT: Interleukin-2 expression by a subpopulation of primary T cells is linked to enhanced memory/effector function. Immunity 11;271-280, 1999 https://doi.org/10.1016/S1074-7613(00)80102-8
  54. Nizard P, Gross DA, Babon A, Chenal A, Beaumelle B, Kosmatopoulos K, Gillet D: Anchoring cytokines to tumor cells for the preparation of anticancer vaccines without gene transfection in mice. J Immunother 26;63-71, 2003 https://doi.org/10.1097/00002371-200301000-00007
  55. Ji J, Li J, Holmes LM, Burgin KE, Yu X, Wagner TE, Wei Y: Synergistic anti-tumor effect of glycosylphosphatidylin-ositol-anchored IL-2 and IL-12. J Gene Med 6;777-785, 2004 https://doi.org/10.1002/jgm.547
  56. Ji J, Li J, Holmes LM, Burgin KE, Yu X, Wagner TE, Wei Y: Glycoinositol phospholipid-anchored interleukin 2 but not secreted interleukin 2 inhibits melanoma tumor growth in mice. Mol Cancer Ther 1;1019-1024, 2002
  57. Sonn CH, Yoon HR, Seong IO, Chang MR, Kim YC, Kang HC, Suh SC, Kim YS: MethA fibrosarcoma cells expressing membrane-bound forms of IL-2 enhance antitumor immunity. J Microbiol and Biotech 16;1919-1927, 2006
  58. Chang MR, Lee WH, Choi JW, Park SO, Paik SG, Kim YS: Antitumor immunity induced by tumor cells engineered to express a membrane-bound form of IL-2. Exp Mol Med 37;240-249, 2005 https://doi.org/10.1038/emm.2005.32
  59. Choi JW, Lim HY, Chang M-R, Cheon J-Y, Kim YS: Anti-tumor immunity induced by tumor cells expresing a membrane-bound form of IL-2 and SDF-1. Animal Cells and systems 12;193-201, 2008 https://doi.org/10.1080/19768354.2008.9647173
  60. Tepper RI, Pattengale PK, Leder P: Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 57;503-512, 1989 https://doi.org/10.1016/0092-8674(89)90925-2
  61. Huang LR, Chen FL, Chen YT, Lin YM, Kung JT: Potent induction of long-term CD8+ T cell memory by short-term IL-4 exposure during T cell receptor stimulation. Proc Natl Acad Sci U S A 97;3406-3411, 2000 https://doi.org/10.1073/pnas.97.7.3406
  62. Schuler T, Kammertoens T, Preiss S, Debs P, Noben-Trauth N, Blankenstein T: Generation of tumor-associated cytotoxic T lymphocytes requires interleukin 4 from CD8(+) T cells. J Exp Med 194;1767-1775, 2001 https://doi.org/10.1084/jem.194.12.1767
  63. Schuler T, Qin Z, Ibe S, Noben-Trauth N, Blankenstein T: T helper cell type 1-associated and cytotoxic T lymphocyte-mediated tumor immunity is impaired in interleukin 4-deficient mice. J Exp Med 189;803-810, 1999 https://doi.org/10.1084/jem.189.5.803
  64. Song K, Chang Y, Prud'homme GJ: Regulation of T-helper-1 versus T-helper-2 activity and enhancement of tumor immunity by combined DNA-based vaccination and non-viral cytokine gene transfer. Gene Ther 7;481-492, 2000 https://doi.org/10.1038/sj.gt.3301123
  65. Chakrabarti R, Chang Y, Song K, Prud'homme GJ: Plasmids encoding membrane-bound IL-4 or IL-12 strongly costimulate DNA vaccination against carcinoembryonic antigen (CEA). Vaccine 22;1199-1205, 2004 https://doi.org/10.1016/j.vaccine.2003.09.023
  66. Kim YS, Sonn CH, Paik SG, Bothwell AL: Tumor cells expressing membrane-bound form of IL-4 induce antitumor immunity. Gene Ther 7;837-843, 2000 https://doi.org/10.1038/sj.gt.3301175
  67. Herbert AS, Heffron L, Sundick R, Roberts PC: Incorporation of membrane-bound, mammalian-derived immuno-modulatory proteins into influenza whole virus vaccines boosts immunogenicity and protection against lethal challenge. Virol J 6;42, 2009 https://doi.org/10.1186/1743-422X-6-42
  68. Stern AS, Podlaski FJ, Hulmes JD, Pan YC, Quinn PM, Wolitzky AG, Familletti PC, Stremlo DL, Truitt T, Chizzonite R, et al: Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells. Proc Natl Acad Sci U S A 87; 6808-6812, 1990 https://doi.org/10.1073/pnas.87.17.6808
  69. Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S, Loudon R, Sherman F, Perussia B, Trinchieri G: Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med 170;827-845, 1989 https://doi.org/10.1084/jem.170.3.827
  70. Chan SH, Kobayashi M, Santoli D, Perussia B, Trinchieri G: Mechanisms of IFN-gamma induction by natural killer cell stimulatory factor (NKSF/IL-12). Role of transcription and mRNA stability in the synergistic interaction between NKSF and IL-2. J Immunol 148;92-98, 1992
  71. Nastala CL, Edington HD, McKinney TG, Tahara H, Nalesnik MA, Brunda MJ, Gately MK, Wolf SF, Schreiber RD, Storkus WJ, et al: Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. J Immunol 153;1697-1706, 1994
  72. Hsieh CS, Heimberger AB, Gold JS, O'Garra A, Murphy KM: Differential regulation of T helper phenotype development by interleukins 4 and 10 in an alpha beta T-cell-receptor transgenic system. Proc Natl Acad Sci U S A 89;6065-6069, 1992 https://doi.org/10.1073/pnas.89.13.6065
  73. Fan X, Sibalic V, Niederer E, Wuthrich RP: The proinflammatory cytokine interleukin-12 occurs as a cell membrane-bound form on macrophages. Biochem Biophys Res Commun 225;1063-1067, 1996 https://doi.org/10.1006/bbrc.1996.1295
  74. Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M, Wolf SF, Gately MK: Antitumor and anti-metastatic activity of interleukin 12 against murine tumors. J Exp Med 178;1223-1230, 1993 https://doi.org/10.1084/jem.178.4.1223
  75. Car BD, Eng VM, Lipman JM, Anderson TD: The toxicology of interleukin-12: a review. Toxicol Pathol 27;58-63, 1999 https://doi.org/10.1177/019262339902700112
  76. Atkins MB, Robertson MJ, Gordon M, Lotze MT, DeCoste M, DuBois JS, Ritz J, Sandler AB, Edington HD, Garzone PD, Mier JW, Canning CM, Battiato L, Tahara H, Sherman ML: Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res 3;409-417, 1997
  77. Leonard JP, Sherman ML, Fisher GL, Buchanan LJ, Larsen G, Atkins MB, Sosman JA, Dutcher JP, Vogelzang NJ, Ryan JL: Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 90;2541-2548, 1997
  78. Sun Y, Jurgovsky K, Moller P, Alijagic S, Dorbic T, Georgieva J, Wittig B, Schadendorf D: Vaccination with IL-12 gene-modified autologous melanoma cells: preclinical results and a first clinical phase I study. Gene Ther 5;481-490, 1998 https://doi.org/10.1038/sj.gt.3300619
  79. Liu Y, Ehtesham M, Samoto K, Wheeler CJ, Thompson RC, Villarreal LP, Black KL, Yu JS: In situ adenoviral interleukin 12 gene transfer confers potent and long-lasting cytotoxic immunity in glioma. Cancer Gene Ther 9;9-15, 2002 https://doi.org/10.1038/sj.cgt.7700399
  80. Okada Y, Okada N, Mizuguchi H, Takahashi K, Hayakawa T, Mayumi T, Mizuno N: Optimization of antitumor efficacy and safety of in vivo cytokine gene therapy using RGD fiber-mutant adenovirus vector for preexisting murine melanoma. Biochim Biophys Acta 1670;172-180, 2004 https://doi.org/10.1016/j.bbagen.2003.12.002
  81. Kang WK, Park C, Yoon HL, Kim WS, Yoon SS, Lee MH, Park K, Kim K, Jeong HS, Kim JA, Nam SJ, Yang JH, Son YI, Baek CH, Han J, Ree HJ, Lee ES, Kim SH, Kim DW, Ahn YC, Huh SJ, Choe YH, Lee JH, Park MH, Kong GS, Park EY, Kang YK, Bang YJ, Paik NS, Lee SN, Kim SH, Kim S, Robbins PD, Tahara H, Lotze MT, Park CH: Interleukin 12 gene therapy of cancer by peritumoral injection of transduced autologous fibroblasts: outcome of a phase I study. Hum Gene Ther 12;671-684, 2001 https://doi.org/10.1089/104303401300057388
  82. Cimino AM, Palaniswami P, Kim AC, Selvaraj P: Cancer vaccine development: protein transfer of membrane-anchored cytokines and immunostimulatory molecules. Immunol Res 29;231-240, 2004 https://doi.org/10.1385/IR:29:1-3:231
  83. Nagarajan S, Selvaraj P: Glycolipid-anchored IL-12 expressed on tumor cell surface induces antitumor immune response. Cancer Res 62;2869-2874, 2002
  84. Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD, Shortman K, McKenna HJ: Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 184;1953-1962, 1996 https://doi.org/10.1084/jem.184.5.1953
  85. Shaw SG, Maung AA, Steptoe RJ, Thomson AW, Vujanovic NL: Expansion of functional NK cells in multiple tissue compartments of mice treated with Flt3-ligand: implications for anti-cancer and anti-viral therapy. J Immunol 161; 2817-2824, 1998
  86. Chen K, Braun S, Lyman S, Fan Y, Traycoff CM, Wiebke EA, Gaddy J, Sledge G, Broxmeyer HE, Cornetta K: Antitumor activity and immunotherapeutic properties of Flt3-ligand in a murine breast cancer model. Cancer Res 57;3511-3516, 1997
  87. Alsheikhly AR, Zweiri J, Walmesley AJ, Watson AJ, Christmas SE: Both soluble and membrane-bound forms of Flt3 ligand enhance tumor immunity following "suicide" gene therapy in a murine colon carcinoma model. Cancer Immunol Immunother 53;946-954, 2004
  88. Wang YC, Zhu L, McHugh R, Sell KW, Selvaraj P: Expression of heat-stable antigen on tumor cells provides co-stimulation for tumor-specific T cell proliferation and cyto-toxicity in mice. Eur J Immunol 25;1163-1167, 1995 https://doi.org/10.1002/eji.1830250505
  89. Garton KJ, Gough PJ, Blobel CP, Murphy G, Greaves DR, Dempsey PJ, Raines EW: Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J Biol Chem 276;37993-38001, 2001
  90. Zhang X, Wei H, Chen Q, Tian Z: Activation of human natural killer cells by recombinant membrane-expressed fractalkine on the surface of tumor cells. Oncol Rep 17;1371-1375, 2007
  91. Ren T, Chen Q, Tian Z, Wei H: Down-regulation of surface fractalkine by RNA interference in B16 melanoma reduced tumor growth in mice. Biochem Biophys Res Commun 364;978-984, 2007 https://doi.org/10.1016/j.bbrc.2007.10.124
  92. Guo J, Zhang M, Wang B, Yuan Z, Guo Z, Chen T, Yu Y, Qin Z, Cao X: Fractalkine transgene induces T-cell-dependent antitumor immunity through chemoattraction and activation of dendritic cells. Int J Cancer 103;212-220, 2003 https://doi.org/10.1002/ijc.10816
  93. Tang L, Hu HD, Hu P, Lan YH, Peng ML, Chen M, Ren H: Gene therapy with CX3CL1/Fractalkine induces antitumor immunity to regress effectively mouse hepatocellular carcinoma. Gene Ther 14;1226-1234, 2007 https://doi.org/10.1038/sj.gt.3302959
  94. Vitale S, Cambien B, Karimdjee BF, Barthel R, Staccini P, Luci C, Breittmayer V, Anjuere F, Schmid-Alliana A, Schmid-Antomarchi H: Tissue-specific differential antitumour effect of molecular forms of fractalkine in a mouse model of metastatic colon cancer. Gut 56;365-372, 2007 https://doi.org/10.1136/gut.2005.088989

Cited by

  1. Reprogramming CD19-Specific T Cells with IL-21 Signaling Can Improve Adoptive Immunotherapy of B-Lineage Malignancies vol.71, pp.10, 2009, https://doi.org/10.1158/0008-5472.can-10-3843
  2. Membrane-bound form of monocyte chemoattractant protein-1 enhances antitumor effects of suicide gene therapy in a model of hepatocellular carcinoma vol.19, pp.5, 2012, https://doi.org/10.1038/cgt.2012.3
  3. Development of Membrane-Bound GM-CSF and IL-18 as an Effective Tumor Vaccine vol.10, pp.7, 2009, https://doi.org/10.1371/journal.pone.0133470
  4. Ezh2 spares KitL from the cutter vol.131, pp.20, 2009, https://doi.org/10.1182/blood-2018-04-841890
  5. Localized Interleukin-12 for Cancer Immunotherapy vol.11, pp.None, 2009, https://doi.org/10.3389/fimmu.2020.575597
  6. Reprogramming of macrophages with macrophage cell membrane-derived nanoghosts vol.2, pp.11, 2020, https://doi.org/10.1039/d0na00572j