• Title/Summary/Keyword: Genetic Differentiation

Search Result 560, Processing Time 0.025 seconds

Appropriate Electrophoresis Techniques and Isozymes to Identification of Barley Cultivars (보리품종 구분에 적합한 전기영동법과 효소)

  • Son, Eung-Ryong;Lee, Yong-Se;Yoon, Kyung-Eun;Ha, Yong-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.4
    • /
    • pp.405-411
    • /
    • 1985
  • The buffer soluble proteins were extracted from six cultivars of barley grains and analyzed by various electrophoresis; 7.5% polyacrylamide slab gel, 2-30% polyacrylamide porosity gradient tube gel, isoelectric focusing (pH4-9) and starch gel electrophoresis. The proteins, esterase, acid phosphatase, malate dehydrogenase, glutamate dehydrogenase and leucine aminopeptidase were investigated to find out the best method to differentiate barley cultivars. The result were that protein and esterase bands in 2-30% polyacrylamide porosity gradient tube gel electrophoresis and protein bands in 7.5% polyacrylamide slab gel electrophoresis showed typical varietal differences. Therefore, those methods were suitable for differentiation of barley cultivars. It was difficult to differentiate the cultivars by the other methodes and patterns of the other enzymes.

  • PDF

Nitrate enhances the secondary growth of storage roots in Panax ginseng

  • Kyoung Rok Geem ;Jaewook Kim ;Wonsil Bae ;Moo-Geun Jee ;Jin Yu ;Inbae Jang;Dong-Yun Lee ;Chang Pyo Hong ;Donghwan Shim;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.469-478
    • /
    • 2023
  • Background: Nitrogen (N) is an essential macronutrient for plant growth and development. To support agricultural production and enhance crop yield, two major N sources, nitrate and ammonium, are applied as fertilizers to the soil. Although many studies have been conducted on N uptake and signal transduction, the molecular genetic mechanisms of N-mediated physiological roles, such as the secondary growth of storage roots, remain largely unknown. Methods: One-year-old P. ginseng seedlings treated with KNO3 were analyzed for the secondary growth of storage roots. The histological paraffin sections were subjected to bright and polarized light microscopic analysis. Genome-wide RNA-seq and network analysis were carried out to dissect the molecular mechanism of nitrate-mediated promotion of ginseng storage root thickening. Results: Here, we report the positive effects of nitrate on storage root secondary growth in Panax ginseng. Exogenous nitrate supply to ginseng seedlings significantly increased the root secondary growth. Histological analysis indicated that the enhancement of root secondary growth could be attributed to the increase in cambium stem cell activity and the subsequent differentiation of cambium-derived storage parenchymal cells. RNA-seq and gene set enrichment analysis (GSEA) revealed that the formation of a transcriptional network comprising auxin, brassinosteroid (BR)-, ethylene-, and jasmonic acid (JA)-related genes mainly contributed to the secondary growth of ginseng storage roots. In addition, increased proliferation of cambium stem cells by a N-rich source inhibited the accumulation of starch granules in storage parenchymal cells. Conclusion: Thus, through the integration of bioinformatic and histological tissue analyses, we demonstrate that nitrate assimilation and signaling pathways are integrated into key biological processes that promote the secondary growth of P. ginseng storage roots.

The study of caries activity test by multiplex-quantity real time PCR with easy perio test (구강세균 유전자 검사(easy perio test)법을 이용한 치아우식 검사)

  • Yun, Han Gyeol;Park, Seong Gyu;Kim, Jin
    • Journal of Korean Academy of Dental Administration
    • /
    • v.6 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • The aim of this study was to evaluate the competency of the Easyperio test, a genetic test method based on real time PCR for the detection of bacteria that cause dental caries and periodontal disease. To verify the validity of this text, various dental health evaluations were administered to 33 boys between the ages of 12 to 14, as this age group commonly experiences dental caries. These evaluations included a dental caries experience survey, a first molar health evaluation, the Dentocult Streptococcus mutans (SM) strip mutans, the Dentocult Lactobacillus spp (LB) test, and the Easyperio test. The correlation coefficients between the level of the Dentocult SM strip mutans and the dental caries experience were DT (R=0.570, p=0.001), DMFT (R=0.376, p=0.031), and first molar health (R=-0.395, p=0.023). The correlation coefficients between the amount of SM in the Easyperio test and dental caries experience were DT (R=0.528, p=0.002), DMFT (R=0.369, p=0.035), and first molar health (R=-0.426, p=0.013). The correlation coefficients between the level of the dentocult SM strip mutans and the SM amounts of the Easyperio test were S.mi (R=0.564 p=0.001) and S.mu (R=0.621, p=0.002). The correlation coefficients between the level of the Dentocult LB test and the SM amount of Easyperio test was S.mi (R=0.495, p=0.003). In conclusion, Easyperio test may be an easy and effective method for the differentiation and diagnosis of dental caries through quantitative and qualitative analysis of oral bacteria.

Identification and Characterization of Pseudomonas syringae pv. syringae, a Causative Bacterium of Apple Canker in Korea

  • Seunghee, Lee;Wonsu, Cheon;Hyeok Tae, Kwon;Younmi, Lee;Jungyeon, Kim;Kotnala, Balaraju;Yongho, Jeon
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.88-107
    • /
    • 2023
  • In the present investigation, bacterial isolates from infected apple trees causing apple canker during winter were studied in the northern Gyeongbuk Province, Korea. The pathogen was identified as Pseudomonas syringae pv. syringae (Pss) through various physiological and biochemical characterization assays such as BIOLOG, gas chromatography of fatty acid methyl esters, and 16S rRNA. Bioassays for the production of phytotoxins were positive for syringopeptin and syringomycin against Bacillus megaterium and Geotrichum candidum, respectively. The polymerase chain reaction (PCR) method enabled the detection of toxin-producing genes, syrB1, and sypB in Pss. The differentiation of strains was performed using LOPAT and GATTa tests. Pss further exhibited ice nucleation activity (INA) at a temperature of -0.7℃, indicating an INA+ bacterium. The ice-nucleating temperature was -4.7℃ for a non-treated control (sterilized distilled water), whereas it was -9.6℃ for an INA- bacterium Escherichia coli TOP10. These methods detected pathogenic strains from apple orchards. Pss might exist in an apple tree during ice injury, and it secretes a toxin that makes leaves yellow and cause canker symptoms. Until now, Korea has not developed antibiotics targeting Pss. Therefore, it is necessary to develop effective disease control to combat Pss in apple orchards. Pathogenicity test on apple leaves and stems showed canker symptoms. The pathogenic bacterium was re-isolated from symptomatic plant tissue and confirmed as original isolates by 16S rRNA. Repetitive element sequence-based PCR and enterobacterial repetitive intergenic consensus PCR primers revealed different genetic profiles within P. syringae pathovars. High antibiotic susceptibility results showed the misreading of mRNA caused by streptomycin and oxytetracycline.

The contribution of the nervous system in the cancer progression

  • Hongryeol Park;Chan Hee Lee
    • BMB Reports
    • /
    • v.57 no.4
    • /
    • pp.167-175
    • /
    • 2024
  • Cancer progression is driven by genetic mutations, environmental factors, and intricate interactions within the tumor microenvironment (TME). The TME comprises of diverse cell types, such as cancer cells, immune cells, stromal cells, and neuronal cells. These cells mutually influence each other through various factors, including cytokines, vascular perfusion, and matrix stiffness. In the initial or developmental stage of cancer, neurotrophic factors such as nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor are associated with poor prognosis of various cancers by communicating with cancer cells, immune cells, and peripheral nerves within the TME. Over the past decade, research has been conducted to prevent cancer growth by controlling the activation of neurotrophic factors within tumors, exhibiting a novel attemt in cancer treatment with promising results. More recently, research focusing on controlling cancer growth through regulation of the autonomic nervous system, including the sympathetic and parasympathetic nervous systems, has gained significant attention. Sympathetic signaling predominantly promotes tumor progression, while the role of parasympathetic signaling varies among different cancer types. Neurotransmitters released from these signalings can directly or indirectly affect tumor cells or immune cells within the TME. Additionally, sensory nerve significantly promotes cancer progression. In the advanced stage of cancer, cancer-associated cachexia occurs, characterized by tissue wasting and reduced quality of life. This process involves the pathways via brainstem growth and differentiation factor 15-glial cell line-derived neurotrophic factor receptor alpha-like signaling and hypothalamic proopiomelanocortin neurons. Our review highlights the critical role of neurotrophic factors as well as central nervous system on the progression of cancer, offering promising avenues for targeted therapeutic strategies.

Genome-wide SNP analysis provides insights into the XX/XY sex-determination system in silver barb (Barbonymus gonionotus)

  • Visarut Chailertrit;Thitipong Panthum;Lalida Kongkaew;Piangjai Chalermwong;Worapong Singchat;Syed Farhan Ahmad;Ekaphan Kraichak;Narongrit Muangmai;Prateep Duengkae;Surin Peyachoknagul;Kyudong Han;Kornsorn Srikulnath
    • Genomics & Informatics
    • /
    • v.21 no.4
    • /
    • pp.47.1-47.12
    • /
    • 2023
  • Silver barb (Barbonymus gonionotus) is among the most economically important freshwater fish species in Thailand. It ranks fourth in economic value and third in production weight for fisheries and culture in Thailand. An XX/XY sex-determination system based on gynogenesis was previously reported for this fish. In this study, the molecular basis underlying the sex-determination system was further investigated. Genome-wide single-nucleotide polymorphism data were generated for 32 captive-bred silver barb individuals, previously scored by phenotypic sex, to identify sex-linked regions associated with sex determination. Sixty-three male-linked loci, indicating putative XY chromosomes, were identified. Male-specific loci were not observed, which indicates that the putative Y chromosome is young and the sex determination region is cryptic. A homology search revealed that most male-linked loci were homologous to the Mariner/Tc1 and Gypsy transposable elements and are probably the remnants of an initial accumulation of repeats on the Y chromosome from the early stages of sex chromosome differentiation. This research provides convincing insights into the mechanism of sex determination and reveals the potential sex determination regions in silver barb. The study provides the basic data necessary for increasing the commercial value of silver barbs through genetic improvements.

Perspective vaccines for emerging viral diseases in farm animals

  • Ahmad Mohammad Allam;Mohamed Karam Elbayoumy;Alaa Abdelmoneam Ghazy
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.3
    • /
    • pp.179-192
    • /
    • 2023
  • The world has watched the emergence of numerous animal viruses that may threaten animal health which were added to the perpetual growing list of animal pathogens. This emergence drew the attention of the experts and animal health groups to the fact that it has become necessary to work on vaccine development. The current review aims to explore the perspective vaccines for emerging viral diseases in farm animals. This aim was fulfilled by focusing on modern technologies as well as next generation vaccines that have been introduced in the field of vaccines, either in clinical developments pending approval, or have already come to light and have been applied to animals with acceptable results such as viral-vectored vaccines, virus-like particles, and messenger RNA-based platforms. Besides, it shed the light on the importance of differentiation of infected from vaccinated animals technology in eradication programs of emerging viral diseases. The new science of nanomaterials was explored to elucidate its role in vaccinology. Finally, the role of Bioinformatics or Vaccinomics and its assist in vaccine designing and developments were discussed. The reviewing of the published manuscripts concluded that the use of conventional vaccines is considered an out-of-date approach in eliminating emerging diseases. However, these types of vaccines are considered the suitable plan especially in countries with few resources and capabilities. Piloted vaccines that rely on genetic-based technologies with continuous analyses of current viruses should be the aim of future vaccinology. Smart genomics of emerging viruses will be the gateway to choosing appropriate vaccines, regardless of the evolutionary rates of viruses.

Establishing porcine jejunum-derived intestinal organoids to study the function of intestinal epithelium as an alternative for animal testing

  • Bo Ram Lee;Sun A Ock;Mi Ryung Park;Min Gook Lee;Sung June Byun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.2-11
    • /
    • 2024
  • Background: The small intestine plays a crucial role in animals in maintaining homeostasis as well as a series of physiological events such as nutrient uptake and immune function to improve productivity. Research on intestinal organoids has recently garnered interest, aiming to study various functions of the intestinal epithelium as a potential alternative to an in vivo system. These technologies have created new possibilities and opportunities for substituting animals for testing with an in vitro model. Methods: Here, we report the establishment and characterisation of intestinal organoids derived from jejunum tissues of adult pigs. Intestinal crypts, including intestinal stem cells from the jejunum tissue of adult pigs (10 months old), were sequentially isolated and cultivated over several passages without losing their proliferation and differentiation using the scaffold-based and three-dimensional method, which indicated the recapitulating capacity. Results: Porcine jejunum-derived intestinal organoids showed the specific expression of several genes related to intestinal stem cells and the epithelium. Furthermore, they showed high permeability when exposed to FITC-dextran 4 kDa, representing a barrier function similar to that of in vivo tissues. Collectively, these results demonstrate the efficient cultivation and characteristics of porcine jejunum-derived intestinal organoids. Conclusions: In this study, using a 3D culture system, we successfully established porcine jejunum-derived intestinal organoids. They show potential for various applications, such as for nutrient absorption as an in vitro model of the intestinal epithelium fused with organ-on-a-chip technology to improve productivity in animal biotechnology in future studies.

ASCL1-mediated direct reprogramming: converting ventral midbrain astrocytes into dopaminergic neurons for Parkinson's disease therapy

  • Sang Hui Yong;Sang-Mi Kim;Gyeong Woon Kong;Seung Hwan Ko;Eun-Hye Lee;Yohan Oh;Chang-Hwan Park
    • BMB Reports
    • /
    • v.57 no.8
    • /
    • pp.363-368
    • /
    • 2024
  • Parkinson's disease (PD), characterized by dopaminergic neuron degeneration in the substantia nigra, is caused by various genetic and environmental factors. Current treatment methods are medication and surgery; however, a primary therapy has not yet been proposed. In this study, we aimed to develop a new treatment for PD that induces direct reprogramming of dopaminergic neurons (iDAN). Achaete-scute family bHLH transcription factor 1 (ASCL1) is a primary factor that initiates and regulates central nervous system development and induces neurogenesis. In addition, it interacts with BRN2 and MYT1L, which are crucial transcription factors for the direct conversion of fibroblasts into neurons. Overexpression of ASCL1 along with the transcription factors NURR1 and LMX1A can directly reprogram iDANs. Using a retrovirus, GFP-tagged ASCL1 was overexpressed in astrocytes. One week of culture in iDAN convertsion medium reprogrammed the astrocytes into iDANs. After 7 days of differentiation, TH+/TUJ1+ cells emerged. After 2 weeks, the number of mature TH+/TUJ1+ dopaminergic neurons increased. Only ventral midbrain (VM) astrocytes exhibited these results, not cortical astrocytes. Thus, VM astrocytes can undergo direct iDAN reprogramming with ASCL1 alone, in the absence of transcription factors that stimulate dopaminergic neurons development.

Genetic Divergence and Phylogenetic Relationships among the Korean Fireflies, Hotaria papariensis, Luciola lateratis, and Pyrocoelia rufa(Coleoptera: Lampyridae), using Mitochondrial DNA Sequences (미토콘드리아 DNA의 염기서열을 이용한 파파리반딧불이, 애반딧불이 및 늦반딧불이 (딱정벌레목: 반딧불이과)의 유전적 분화 및 계통적 관련)

  • 김익수;이상철;배진식;진병래;김삼은;김종길;윤형주;양성렬;임수호
    • Korean journal of applied entomology
    • /
    • v.39 no.4
    • /
    • pp.211-226
    • /
    • 2000
  • Genetic divergence and phylogenetic relationships among the major Korean fireflies (Hotaria papariensis, Luciola lateralis, and Pyrocoelia rufa) were studied. A portion of mitochondrial COI (403 bp) and 165 rRNA (490~504 bp) genes were sequenced, and the GenBank-registered, homologous 165 rRNA sequences of Japanese fireflies were compared (27 species of Lampyridae, one of Lycidae, and one of Rhgophthalmidae). Greatest DNA and/or amino acid sequence divergence was found when P rufa, belonging to Lampyrinae was compared with H. papariensis and L. lateralis, both belong-ing to Luciolinae, confirming the current taxonomic status of the species. In the PAUP and PHYLIP analyses with 165 rRNA data, grouping of the two geographic samples of H. papariensis with H. tsushimana validate the use of generic name, Hotaria. Nevertheless, lack of sister-group relationship of the two geographic samples of H. papariensis renders further investigation on this group . Although the Korean and Japanese L. lateralis formed a strong monophyletic group, a substantial genetic differentiation was detected between them (2.9% of 165 rRNA gene sequence divergence). Finally, the geographic samples of Korean p. rufa strongly formed a group with Japanese p. rufa, warranting the use of generic name, Pyrocoelia, but the genetic distance observed between the Cheju-Island individual and all others requires further investigation on this subject. Summarized, this study supports the current taxonomic status of the Korean fireflies in that each respectively formed a strong monophyletic group with its own species or genus.

  • PDF