통신망 설계는 다양한 설계 인자들이 고려되는 다목적 함수 문제이다. 특히 망의 구성 비용, 메시지 지연 그리고 신뢰도는 망의 최대 효율을 얻는데 중요한 설계 인자이다. 최근 들어 유전자 알고리즘은 조합최적화 문제, 통신망 설계문제와 같은 현실적 문제를 위한 최적화 기법으로 널리 활용되어 지고 있다. 본 논문은 망의 구성비용과 메시지 지연시간을 최소화 하는 통신망 설계를 위한 다목적 유전 알고리즘을 제시한다. 본 알고리즘은 다목적 함수의 최적화에서 일반적으로 어려운 목적 함수간의 최적화를 위해 파레토를 이용하였다. 부호화 방법으로 프뤼퍼 숫자와 클러스터링 문자를 사용했고, 적합도 배분방법으로 파레토 순위할당 제거방법과 생태적 적소형태(niche-formation)방법을 사용하였으며, 조기수렴을 방지위해 변형된 엘리트 기법을 사용했다. 시뮬레이션을 통해 제안하는 알고리즘이 망구성의 후보해를 효과적으로 찾음을 보여준다.
Park, Ho-Sung;Park, Byoung-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
International Journal of Control, Automation, and Systems
/
제2권4호
/
pp.423-434
/
2004
In this paper, we introduce a new topology of Self-Organizing Polynomial Neural Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. Let us recall that the design of the 'conventional' SOPNN uses the extended Group Method of Data Handling (GMDH) technique to exploit polynomials as well as to consider a fixed number of input nodes at polynomial neurons (or nodes) located in each layer. However, this design process does not guarantee that the conventional SOPNN generated through learning results in optimal network architecture. The design procedure applied in the construction of each layer of the SOPNN deals with its structural optimization involving the selection of preferred nodes (or PNs) with specific local characteristics (such as the number of input variables, the order of the polynomials, and input variables) and addresses specific aspects of parametric optimization. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between the approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented using pH neutralization process data as well as sewage treatment process data. A comparative analysis indicates that the proposed SOPNN is the model having higher accuracy as well as more superb predictive capability than other intelligent models presented previously.reviously.
In this rarer, we introduce a new Fuzzy Polynomial Neural Networks (FPNNs)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNs based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNs-like structurenamed Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. In considering the structures of FPNN-like networks such as FPNN and FSPNN, they are almost similar. Therefore they have the same shortcomings as well as the same virtues on structural side. The proposed design procedure for networks' architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IG) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using gas furnace process dataset.
본 연구는 유전자 알고리즘을 IDS에 적용된 오용 탐지 기법을 처음으로 제안하고 구현한 점에서 의미가 있다. 세계적인 대회인 KBD 콘테스트의 데이터를 사용하여 실험하였으며, 그에 따른 가능한 한 같은 환경 하에서 실험을 실시하였다. 실험은 레코드집합을 하나의 유전자로, 즉 하나의 공격패턴으로 간주하고 유전자 알고리즘을 활용하여 진화 시켜 침입 패턴,즉 침입 규칙(Rules)을 생성한다. 데이터 마이닝 기법중 분류(Classification)에 초점을 맞추어 분석과 실험을 하였다. 이 데이터를 중심으로 침입 패턴을 생성하였다. 즉, 오용탐지(Misuse Detection) 기법을 실험하였으며, 생성된 규칙은 침입데이터를 대표하는 규칙로 비정상 사용자와 정상 사용자를 분류하게 된다. 규칙은 "Time Based Traffic Model", "Host Based Traffic Model", "Content Model" 이 세가지 모듈에서 각각 상이한 침입 규칙을 생성하게 된다. 규칙 생성의 지속적인 업데이트가 힘든 오용탐지 기법에 지속적으로 성장하며 변화해 가는 규칙을 자동적으로 생성하는 시스템으로서, 생성된 규칙은 430M Test data 집합에서 테스트한 결과 평균 약 94.3%의 탐지율을 보였다. 테스트한 결과 평균 약 94.3%의 탐지율을 보였다.
본 논문에서는, 최적 시스템을 위해서 FNN과 PNN에 기반을 둔 Multi-FPNN(다중 퍼지 다항식 뉴럴네트워크) 모델을 제안한다. 여기서 FNN 구조는 각각의 분리된 입력변수에 의해 분할된 퍼지 입력공간을 사용해서 설게되고, 간략 퍼지추론 방법과 오류 역전파 알고리즘을 이용한다. FNN은 더 좋은 출력성능을 얻기 위해 PNN과 결합한다. GMDH 방법에 기초한 PNN 구조의 각 노드는 1차 및 2차 고계 다항식의 두 형태를 사용하고, 그 노드의 입력의 입력은 2, 3, 4의 세 종류의 다변수 입력을 사용한다. 그리고 다중 FPNN 모델의 구조와 파라미터를 동정하기 위햐 HCM 크러스터링방법과 유전자 알고리즘을 사용한다. 여기서, 시스템을 위해 데이터 전처리 기능을 수행하는 HCM 클러스터링 방법은 입출력 공간분할에 의해 다중 FPNN 구조를 결정하기 위해 사용된다. 모델의 근사화와 일반화 능력 사이에 충분한 군형을 ?기 위해 하중계수를 가진 합성 성능지수(목적함수)를 사용한다. 데이터 개수, 비선형의 정도(입.출력 데이터 분포)에 위존하는 이 합성 목적함수의 하중계수의 선택 및 조절을 통하여 최적의 다중 FPNN모델을 설계하는 것이 유용하고 효과적임을 보인다. 본 연구는 두 개의 대표적 수치예의 도움으로 설명되고, 그 모델의 근사화 및 일만화 능력에 관련된 합성 성능 지수가 평가되고, 도한 토의된다.
본 연구는 변화하는 기업환경에 부응하기 위하여, 경영성과지표를 관리하는 최고의사결정자의 관점에서 정보기술의 효과적인 활용을 통하여 기업 전체의 조직이 공유할 수 있는 경영성과 정보시스템을 전개하고자 한다. 이를 위하여 기업의 경영성과분석에 대한 일반론을 서술하여 이해관계자 관점에서의 부가가치(Value-Added)와 가치경영 관점에서의 경제적부가가치(Economic Value-Added)를 기업 경영성과의 두 축으로 제시한다. 제시된 경영성과분석 체계를 통하여 기업내부의 이해관계자는 물론 기업 외부의 이해관계자 역시 기업의 경영성과를 올바르게 평가할 수 있는 토대를 마련함으로서 기업의 경영성과라는 지식체계를 기업 내 외부의 전 조직이 공유할 수 있는 이론적 틀을 제시한다. 본 연구에서 제기되는 경영성과 데이터마이닝 시스템은 경영성과의 변화를 주도하는 중요 관리변수를 추출하기 위하여 유전알고리즘(Genetic Algorithms)을 활용한 데이터마이닝(Data Mining)체계를 구현함으로써, 기존의 단발적인 방법으로 기업 경영성과를 분석하는 것이 아니라, 경영성과의 변화를 연속적으로 추적하고 이에 영향을 미치는 여러 가지 변수를 실시간으로 분석할 수 있으며 기업 내 외부의 모든 이해관계자가 경영성과에 대한 정보 지식을 공유할 수 있는 물리적 토대를 제공할 수 있다. 그리고 구축된 경영성과에 대한 정보 지식의 발견 공유체계는 급격한 변화에 능동적으로 대처할 수 있는 바람직한 의사결정의 토대가 될 수 있을 것이라 판단된다. 기업 경영성과분석의 기준이 되는 5개 운영데이터 테이블의 자료는 (주)한국신용평가의 재무제표 데이터베이스인 KISFAS(Korea Investors Services Financial Analysis System)를 활용하였으며, 국내의 자동차산업을 대상으로 1981-l996년까지의 자료를 이용하였다.
본 연구에서는 복잡하고 비선형 시스템을 모델 동정하기 위해 정보 granules에 기반한 퍼지 추론 시스템의 새로운 범주를 소개한다. 비공식적으로 말하면, 정보 granules는 근접성, 유사성 또는 기능성 등에 인하여 서로 결합되는 대상(특히, 수치 데이터)의 연결된 모임으로 간주된다. HCM 클러스터링에 의한 정보 granulation은 퍼지 규칙의 전반부 및 후반부에서 사용되는 멤버쉽 함수의 포기 정점과 다항식함수의 초기 값과 같은 퍼지 모델의 초기 파라미터를 결정하는데 도움을 준다. 그리고 포기 파라미터는 유전자 알고리즘과 최소자승법에 의해 효과적으로 동조된다. 또한, 퍼지 모델의 성능사이의 상호균형을 얻기 위하여 하중값을 가진 합성 목적함수를 사용하여 근사화와 예측성능의 향상을 꾀한다. 제안된 모델은 수치적인 예제를 가지고 평가하고, 문헌에서 나타난 기존의 퍼지 모델의 성능과 대조된다.
본 논문에서는 유전자 알고리즘을 이용하여 퍼지 제어 시스템 설계 방법을 제안한다. 시스템의 성능 평가는 rise-time, settling time 그리고 overshoot와 같은 성능 매개변수를 이용하였다. 제안한 방법은 root-locus 방법을 사용한 제어 시스템과 비교하였다. 기존 제어 시스템은 제어기 설계시 수학적인 처리가 필요하다. 하지만 유전자 알고리즘을 이용한 제어기 설계는 수학적인 모델링을 할 필요가 없다. 그리고 일반적으로 시스템의 비선형 정도는 탐색에 의해서만 알수 있는 성질의 것이므로 본 논문에서는 최적의 탐색 알고리즘으로 널리 인정되고 있는 유전자 알고리즘을 사용하여 전역적인 규칙 공간을 탐색한 후 이를 바탕으로 퍼지 제어기를 완성한다. 제안된 제어 시스템의 효율성은 타스크 트래킹 위치 제어 시스템을 사용하여 안정, 불안정 시스템에서 컴퓨터 모의 실험을 통해서 입증된다.
본 논문에서는 경제학, 사회학, 수학 분야에서 수십년 전부터 연구해오던 죄수의 딜레마 게임의 협동진화에 대해 고찰해보고자 한다. 반복적 죄수의 딜레마 게임은 게임이론의 가장 기본적인 이론으로써, 사회적 상호작용, 경제활동, 국제관계 등 다양한 현상들을 모델링 하기 위한 하나의 방법이다. 그 중에 N명이 참가하는 반복적 죄수 딜레마 게임의 전략은 유전 알고리즘(Genetic Algorithms, GAs)을 통해 진화적으로 만들어 낼 수 있으며, 이 경우에 그 결과를 일반적인 내쉬 균형 이 아닌, 모든 개체들이 유전알고리즘을 통해 협동으로 수렴하도록 유도할 수 있다는 사실은 상당히 시사하는 바가 크다. 기존에 주로 연구되어오던 죄수의 딜레마 게임은 협동으로의 수렴과정에서 일반적으로 순위기반선택(Rank-based selection)과 1점 교배기법(1point crossover)을 사용한다. 그러나 순위기반선택은 모든 개체에 순위을 매겨야 하기 때문에, 개체수가 커질수록 성능이 저하되며, 1점 교배기법은 개체 값이 분산되어있을 경우, 최적해(Optimal solution)을 찾기 힘들다는 단점이 있어, 개체수가 많은 경우에 적용하기에는 비효율적이다. 본 논문에서는 토너먼트 선택기법(Tournament selection)과 자기 적응형 교배기법(Self-adaptive crossover)을 적용한 새로운 기법을 제안한다. 또한 기존 기법과 비교 실험을 통해 제안기법이 기존기법에 비해 평균 수렴시간과 수렴 횟수에서 뛰어난 성능을 보이고 있음을 확인하였다.
본 연구에서는 퍼지관계 및 진화론적 최적 다층 퍼셉트론에 기초한 퍼지다항식 뉴럴네트워크(FPNN)의 새로운 구조를 소개하고, 포괄적인 설계방법론을 토의하며, 그리고 일련의 수치적인 실험이 수행된다. 진화론적 최적 FPNN(EFPNN)의 구축을 위해 컴퓨터지능(CI)의 기반 기술을 이용한다. EFPNN의 구조는 규칙베이스 퍼지뉴럴네트워크와 다항식 뉴럴네트워크의 결합에 의한 유전자 최적 구동 하이브리드 시스템의 시너지 이용으로 얻어진다. 퍼지뉴럴네트워크는 EFPNN의 전체규칙 구조의 전반부에 기여하고, EFPNN의 후반부는 다항식 뉴럴네트워크를 사용하여 설계된다. EFPNN의 후반부를 위한 유전론적 최적 다항식 뉴럴네트워크의 개발은 두 최적화 기법에 의해 수행된다. 즉 구조적 최적화는 유전자알고리즘에 의해 수행되고, 파라미터 최적화는 최소자승법 기반의 학습을 통해 행하여진다. EFPNN의 성능 평가를 위해, 모델은 몇 가지 수치 예제를 이용한다. 비교에 의한 해석은 제안된 EFPNN이 이전에 제시된 다른 지능형 모델보다 높은 정확도 뿐만 아니라 좀 더 우수한 예측능력을 가지는 모델임을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.