• Title/Summary/Keyword: Genetic Algorithms(GA)

Search Result 460, Processing Time 0.032 seconds

Evolution of autonomous mobile robot using genetic algorithms (유전자 알고리즘을 이용한 자율주형로봇의 진화진 관한 연구)

  • Yoo, Jae-Young;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2953-2955
    • /
    • 1999
  • In this paper, the concept of evolvable hardware and evolutionary robotics are introduced and constructing the mobile robot controller without human operator is suggested. The robot controller is evolved to avoid obstacles by genetic learning which determines the weights between sensor inputs and motor outputs. Genetic algorithms which is executed in a computer(PC) searches the best weights by interacting with robot performance under it's environment. The experiment is done by real mobile robot Khepera and a simple GA.

  • PDF

Optimization Design of Log-periodic Dipole Antenna Arrays Via Multiobjective Genetic Algorithms

  • Wang, H.J.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1353-1355
    • /
    • 2003
  • Genetic algorithms (GA) is a well known technique that is capable of handling multiobjective functions and discrete constraints in the process of numerical optimization. Together with the Pareto ranking scheme, more than one possible solution can be obtained despite the imposed constraints and multi-criteria design functions. In view of this unique capability, the design of the log-periodic dipole antenna array (LPDA) using this special feature is proposed in this paper. This method also provides gain, front-back level and S parameter design tradeoff for the LPDA design in broadband application at no extra computational cost.

  • PDF

The Application of Load Re-configuration Using Genetic Algorithm for the Distribute Systems Mischance (배전계통 사고시 부하절체 방법의 GA 적용에 관한 연구)

  • Choi, Dae-Seub;Sin, Ho-Chul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.115-123
    • /
    • 2011
  • Distribution system loss minimization re-configuration is 0-1 planning problem, and the number of combinations requiring searches is extremely large when dealing with typical system scales. For this reason, the application of a genetic algorithm (GA) seems a tractive to solve this problem. Although Genetic algorithms are a type of random number search method, they incorporate a multi-point search feature and are therefore superior to one-point search techniques. The incorporate of GAs for solving large combinational problem has received wide attention. Further, parallel searching can be performed and the optimal solution is more easily reach ed. In this paper, for improving GA convergence characteristics in the distribution system loss minimization re-configuration problem, a chromosome "Limited Life" concept is introduced. Briefly, considering the population homogenization and genetic drift problems, natural selection is achieved by providing this new concept, in addition to natural selection by fitness. This is possible because individuals in a population have an age value. Simulation were carried out using a model system to check this method's validity.

An optimization approach for the optimal control model of human lower extremity musculoskeletal system (최적화 기법에 의한 인체 하지 근골격 시스템의 최적제어 모델 개발)

  • Kim, Seon-Pil
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.10 no.4
    • /
    • pp.54-64
    • /
    • 2005
  • The study investigated genetic algorithms for the optimal control model of maximum height vertical jumping. The model includes forward dynamic simulations by the neural excitation-control variables. Convergence of genetic algorithms is very slow. In this paper the micro genetic algorithm(micro-GA) was used to reduce the computation time. Then a near optimal solution from micro-GA was an initial solution for VF02, which is one of well-developed and proven nonlinear programming algorithms. This approach provided the successful optimal solution for maximum-height jumping without a reasonable initial guess.

  • PDF

Global Minimum-Jerk Trajectory Planning of Space Manipulator

  • Huang Panfeng;Xu Yangsheng;Liang Bin
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.405-413
    • /
    • 2006
  • A novel approach based on genetic algorithms (GA) is developed to find a global minimum-jerk trajectory of a space robotic manipulator in joint space. The jerk, the third derivative of position of desired joint trajectory, adversely affects the efficiency of the control algorithms and stabilization of whole space robot system and therefore should be minimized. On the other hand, the importance of minimizing the jerk is to reduce the vibrations of manipulator. In this formulation, a global genetic-approach determines the trajectory by minimizing the maximum jerk in joint space. The planning procedure is performed with respect to all constraints, such as joint angle constraints, joint velocity constraints, joint angular acceleration and torque constraints, and so on. We use an genetic algorithm to search the optimal joint inter-knot parameters in order to realize the minimum jerk. These joint inter-knot parameters mainly include joint angle and joint angular velocities. The simulation result shows that GA-based minimum-jerk trajectory planning method has satisfactory performance and real significance in engineering.

A Genetic Algorithm for Dynamic Job Shop Scheduling (동적 Job Shop 일정계획을 위한 유전 알고리즘)

  • 박병주;최형림;김현수;이상완
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.2
    • /
    • pp.97-109
    • /
    • 2002
  • Manufacturing environments in the real world are subject to many sources of change and uncertainty, such as new job releases, job cancellations, a chance in the processing time or start time of some operation. Thus, the realistic scheduling method should Properly reflect these dynamic environment. Based on the release times of jobs, JSSP (Job Shoe Scheduling Problem) can be classified as static and dynamic scheduling problem. In this research, we mainly consider the dynamic JSSP with continually arriving jobs. The goal of this research is to develop an efficient scheduling method based on GA (Genetic Algorithm) to address dynamic JSSP. we designed scheduling method based on SGA (Sing1e Genetic Algorithm) and PGA (Parallel Genetic Algorithm) The scheduling method based on GA is extended to address dynamic JSSP. Then, This algorithms are tested for scheduling and rescheduling in dynamic JSSP. The results is compared with dispatching rule. In comparison to dispatching rule, the GA approach produces better scheduling performance.

Optimal Design of Satellite Customer Assignment using Genetic Algorithm (유전자알고리즘을 적용한 위성고객할당 최적 설계)

  • Kim, Sung-Soo;Kim, Choong-Hyun;Kim, Ki-Dong;Lee, Sun-Yeob
    • IE interfaces
    • /
    • v.19 no.4
    • /
    • pp.300-305
    • /
    • 2006
  • The problem of assigning customers to satellite channels is considered in this paper. Finding an optimal allocation of customers to satellite channels is a difficult combinatorial optimization problem and is shown to be NP-complete in an earlier study. We propose a genetic algorithm (GA) approach to search for the best/optimal assignment of customers to satellite channels. Various issues related to genetic algorithms such as solution representation, selection methods, genetic operators and repair of invalid solutions are presented. A comparison of GA with CPLEX8.1 is presented to show the advantages of this approach in terms of computation time and solution quality.

A study on the genetic algorithms for the scheduling of parallel computation (병렬계산의 스케쥴링에 있어서 유전자알고리즘에 관한 연구)

  • 성기석;박지혁
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.166-169
    • /
    • 1997
  • For parallel processing, the compiler partitions a loaded program into a set of tasks and makes a schedule for the tasks that will minimize parallel processing time for the loaded program. Building an optimal schedule for a given set of partitioned tasks of a program has known to be NP-complete. In this paper we introduce a GA(Genetic Algorithm)-based scheduling method in which a chromosome consists of two parts of a string which decide the number and order of tasks on each processor. An additional computation is used for feasibility constraint in the chromosome. By granularity theory, a partitioned program is categorized into coarse-grain or fine-grain types. There exist good heuristic algorithms for coarse-grain type partitioning. We suggested another GA adaptive to the coarse-grain type partitioning. The infeasibility of chromosome is overcome by the encoding and operators. The number of processors are decided while the GA find the minimum parallel processing time.

  • PDF

A Shaking Optimization Algorithm for Solving Job Shop Scheduling Problem

  • Abdelhafiez, Ehab A.;Alturki, Fahd A.
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • In solving the Job Shop Scheduling Problem, the best solution rarely is completely random; it follows one or more rules (heuristics). The Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing, and Tabu search, which belong to the Evolutionary Computations Algorithms (ECs), are not efficient enough in solving this problem as they neglect all conventional heuristics and hence they need to be hybridized with different heuristics. In this paper a new algorithm titled "Shaking Optimization Algorithm" is proposed that follows the common methodology of the Evolutionary Computations while utilizing different heuristics during the evolution process of the solution. The results show that the proposed algorithm outperforms the GA, PSO, SA, and TS algorithms, while being a good competitor to some other hybridized techniques in solving a selected number of benchmark Job Shop Scheduling problems.

A GA-based Heuristic for the Interrelated Container Selection Loading Problems

  • Techanitisawad, Anulark;Tangwiwatwong, Paisitt
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.1
    • /
    • pp.22-37
    • /
    • 2004
  • An integrated heuristic approach based on genetic algorithms (GAs) is proposed for solving the container selection and loading problems. The GA for container selection solves a two-dimensional knapsack problem, determining a set of containers to minimize the transportation or shipment cost. The GA for container loading solves for the weighted coefficients in the evaluation functions that are applied in selecting loading positions and boxes to be loaded, so that the volume utilization is maximized. Several loading constraints such as box orientation, stack priority, stack stability, and container stability are also incorporated into the algorithm. In general, our computational results based on randomly generated data and problems from the literature suggest that the proposed heuristic provides a good solution in a reasonable amount of computational time.