Abstract
Manufacturing environments in the real world are subject to many sources of change and uncertainty, such as new job releases, job cancellations, a chance in the processing time or start time of some operation. Thus, the realistic scheduling method should Properly reflect these dynamic environment. Based on the release times of jobs, JSSP (Job Shoe Scheduling Problem) can be classified as static and dynamic scheduling problem. In this research, we mainly consider the dynamic JSSP with continually arriving jobs. The goal of this research is to develop an efficient scheduling method based on GA (Genetic Algorithm) to address dynamic JSSP. we designed scheduling method based on SGA (Sing1e Genetic Algorithm) and PGA (Parallel Genetic Algorithm) The scheduling method based on GA is extended to address dynamic JSSP. Then, This algorithms are tested for scheduling and rescheduling in dynamic JSSP. The results is compared with dispatching rule. In comparison to dispatching rule, the GA approach produces better scheduling performance.