• 제목/요약/키워드: Genetic Algorithms(GA)

검색결과 462건 처리시간 0.026초

적응형 계층적 공정 경쟁 유전자 알고리즘을 이용한 정보입자 기반 퍼지집합 퍼지모델의 최적화 (Optimization of IG_based Fuzzy Set Fuzzy Model by Means of Adaptive Hierarchical Fair Competition-based Genetic Algorithms)

  • 최정내;오성권
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.366-369
    • /
    • 2006
  • 본 논문에서는 계층적 공정 경쟁 유전자 알고리즘을 통한 비선형시스템의 정보입자 기반 퍼지집합 퍼지집합 모델의 최적화 방법을 제안한다. 퍼지집합 모델은 주로 전문가의 경험에 기반을 두어 얻어지기 때문에 동정과 최적화 과정이 필요하며 GAs를 이용하여 퍼지모델을 최적화한 연구가 많이 있다. GAs는 전역 해를 찾을 수 있는 최적화 알고리즘으로 잘 알려져 있지만 조기 수렴 문제를 포함하고 있다. 병렬유전자 알고리즘(PGA)은 조기수렴를 더디게 하고 전역 해를 찾기 위한 진화알고리즘이다. 적응형 계층적 공정 경쟁기반 유전자 알고리즘(AHFCGA)을 이용하여 퍼지모델의 입력변수, 멤버쉽함수의 수, 멤버쉽함수의 정점 등의 전반부 구조와 파라미터를 동정하였고, LSE를 사용하여 후반부 파라미터를 동정하였으며 실험적 예제를 통하여 제안된 방법의 성능을 평가한다.

  • PDF

유전 알고리즘을 이용한 최소 무게 삼각화 문제 연구 (Solving Minimum Weight Triangulation Problem with Genetic Algorithm)

  • 한근희;김찬수
    • 정보처리학회논문지B
    • /
    • 제15B권4호
    • /
    • pp.341-346
    • /
    • 2008
  • Minimum Weight Triangulation (MWT) 는 최적화 문제로서 주어진 그래프에 대한 최소 무게 삼각화를 계산하는 문제이다. 본 문제는 많은 다른 그래프 문제들처럼 일반 그래프에 대하여 NP-hard 계열의 문제로 알려져 있으며 지금까지 simulated annealing 및 유전 알고리즘 등 heuristic algorithm 들이 제시되어 왔다. 본 논문에서는 MWT 문제에 대하여 GA-FF 라 불리우는 새로운 유전 알고리즘을 제시하며 또한 그성능이 기존의 유전 알고리즘보다 더욱 효율적임을 보인다.

최소좁은세상 셀룰러 유전알고리즘 (Smallest-Small-World Cellular Genetic Algorithms)

  • 강태원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권11호
    • /
    • pp.971-983
    • /
    • 2007
  • 셀룰러 유전알고리즘(CGAs)은 모집단이 특정한 위상 구조를 갖는 유전알고리즘의 일종이다. 보통의 경우, CGAs의 모집단 공간은 네트워크 이론 측면에서 상대적으로 긴 평균경로길이와 큰 클러스터링계수를 갖는 정규 격자형 위상 구조이다. 평균경로길이가 길면 멀리 떨어진 개체들 사이의 유전적 상호작용이 느리게 일어난다. 따라서 클러스터링계수를 유지하면서 평균경로길이를 줄인다면 개체의 다양성이 유지되면서도 모집단이 보다 빠르게 수렴할 것이다. 이 논문에서는 최소좁은세상 셀룰러 유전알고리즘(SSWCGAs)을 제안한다. SSWCGAs에서 각 개체는 클러스터링이 잘되었으면서도 노드를 연결하는 평균경로길이가 짧은 모집단에 거주하여, 클러스터링에 의한 세부탐색 능력을 유지하면서도 전역탐색을 잘하게 된다. 네 가지 실변수 함수와 두 가지 GA-hard 문제에 대한 실험을 통하여 SSWCGAs가 SGAs 및 CGAs보다 효과적임을 보였다.

유전자 알고리즘을 이용한 차량 승차감 개선에 관한 연구 (A Study on the Improvement of Vehicle Ride Comfort by Genetic Algorithms)

  • 백운태;성활경
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.76-85
    • /
    • 1998
  • Recently, Genetic Algorithm(GA) is widely adopted into a search procedure for structural optimization, which is a stochastic direct search strategy that mimics the process of genetic evolution. This methods consist of three genetics operations maned selection, crossover and mutation. Contrast to traditional optimal design techniques which use design sensitivity analysis results, GA, being zero-order method, is very simple. So, they can be easily applicable to wide area of design optimization problems. Also, owing to multi-point search procedure, they have higher probability of converge to global optimum compared to traditional techniques which take one-point search method. In this study, a method of finding the optimum values of suspension parameters is proposed by using the GA. And vehicle is modelled as planar vehicle having 5 degree-of-freedom. The generalized coordinates are vertical motion of passenger seat, sprung mass and front and rear unsprung mass and rotate(pitch) motion of sprung mass. For rapid converge and precluding local optimum, share function which distribute chromosomes over design bound is introduced. Elitist survival model, remainder stochastic sampling without replacement method, multi-point crossover method are adopted. In the sight of the improvement of ride comfort, good result can be obtained in 5-D.O.F. vehicle model by using GA.

  • PDF

멀티프로세서 태스크 할당을 위한 GA과 SA의 비교 (Comparison of Genetic Algorithms and Simulated Annealing for Multiprocessor Task Allocation)

  • 박경모
    • 한국정보처리학회논문지
    • /
    • 제6권9호
    • /
    • pp.2311-2319
    • /
    • 1999
  • 병렬 컴퓨팅에 있어 NP-complete 문제인 태스크 할당문제에 대한 두 가지 휴리스틱 알고리즘을 제시한다. 할당문제는 분산 메모리 멀티컴퓨터의 멀티 프로세싱 노드에 다중통신 태스크들을 최적의 매핑을 찾는 것이다. 태스크들을 목표 시스템 구조의 노드들에 매핑시키는 목적은 해법 품질에 손상 없이 병렬 실행시간을 최소화하기 위함이다. 많은 휴리스틱 기법들이 만족한 매핑을 얻기 위해 채택되어 왔다. 본 논문에서 제시되는 휴리스틱 기법은 유전자 알고리즘(GA)과 시뮬레이티드 어닐링(SA) 기법에 기반을 둔다. 매핑 설정을 위한 총 계산 비용으로 목적함수를 수식화하고 휴리스틱 알고리즘들의 성능을 평가한다. 랜덤, 그리디, 유전자, 어닐링 알고리즘들을 사용하여 얻은 해법의 품질과 시간을 비교한다. 할당 알고리즘 시뮬레이션 연구를 통한 실험적 결과를 보여준다.

  • PDF

멀티코어 이기종메모리 환경에서의 유전 알고리즘 기반 실시간 전력 절감 스케줄링 (Real-Time Power-Saving Scheduling Based on Genetic Algorithms in Multi-core Hybrid Memory Environments)

  • 류수현;조예원;조경운;반효경
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권1호
    • /
    • pp.135-140
    • /
    • 2020
  • 최근 사물인터넷, 지능형 시스템 등의 활성화로 실시간 임베디드 시스템의 전력 절감 기술이 중요해지고 있다. 본 논문은 멀티코어 이기종메모리 환경에서 실시간 시스템의 전력 소모량을 절감하는 P-GA (parallel genetic algorithm) 스케줄링 알고리즘을 제안한다. P-GA는 멀티코어를 위한 PF (proportional fairness) 알고리즘에 기반한 프로세서의 전압 및 주파수 동적 조절 기법에 차세대 비휘발성메모리 기술을 결합하여 시스템의 전력 소모를 더욱 줄인다. 특히, 유전 알고리즘을 사용하여 태스크별 수행 프로세서의 전압 및 주파수 모드와 메모리의 종류를 최적화하여 태스크 집합의 전력 소모량을 최소화한다. 시뮬레이션 실험을 통해 P-GA가 기존 방식 대비 최대 2.85배의 전력 소모량을 감소할 수 있음을 보인다.

An Interference Avoidance Method Using Two Dimensional Genetic Algorithm for Multicarrier Communication Systems

  • Huynh, Chuyen Khoa;Lee, Won Cheol
    • Journal of Communications and Networks
    • /
    • 제15권5호
    • /
    • pp.486-495
    • /
    • 2013
  • In this article, we suggest a two-dimensional genetic algorithm (GA) method that applies a cognitive radio (CR) decision engine which determines the optimal transmission parameters for multicarrier communication systems. Because a CR is capable of sensing the previous environmental communication information, CR decision engine plays the role of optimizing the individual transmission parameters. In order to obtain the allowable transmission power of multicarrier based CR system demands interference analysis a priori, for the sake of efficient optimization, a two-dimensionalGA structure is proposed in this paper which enhances the computational complexity. Combined with the fitness objective evaluation standard, we focus on two multi-objective optimization methods: The conventional GA applied with the multi-objective fitness approach and the non-dominated sorting GA with Pareto-optimal sorting fronts. After comparing the convergence performance of these algorithms, the transmission power of each subcarrier is proposed as non-interference emission with its optimal values in multicarrier based CR system.

동적인 교차 및 동연변이 확률을 갖는 균일 교차방식 유전 알고리즘 (A genetic algorithm with uniform crossover using variable crossover and mutation probabilities)

  • 김성수;우광방
    • 제어로봇시스템학회논문지
    • /
    • 제3권1호
    • /
    • pp.52-60
    • /
    • 1997
  • In genetic algorithms(GA), a crossover is performed only at one or two places of a chromosome, and the fixed probabilities of crossover and mutation have been used during the entire generation. A GA with dynamic mutation is known to be superior to GAs with static mutation in performance, but so far no efficient dynamic mutation method has been presented. Accordingly in this paper, a GA is proposed to perform a uniform crossover based on the nucleotide(NU) concept, where DNA and RNA consist of NUs and also a concrete way to vary the probabilities of crossover and mutation dynamically for every generation is proposed. The efficacy of the proposed GA is demonstrated by its application to the unimodal, multimodal and nonlinear control problems, respectively. Simulation results show that in the convergence speed to the optimal value, the proposed GA was superior to existing ones, and the performance of GAs with varying probabilities of the crossover and the mutation improved as compared to GAs with fixed probabilities of the crossover and mutation. And it also shows that the NUs function as the building blocks and so the improvement of the proposed algorithm is supported by the building block hypothesis.

  • PDF

퍼지 논리를 이용한 병렬 유전 알고리즘 (Parallel Genetic Algorithm using Fuzzy Logic)

  • 안영화;권기호
    • 정보처리학회논문지A
    • /
    • 제13A권1호
    • /
    • pp.53-56
    • /
    • 2006
  • 유전 알고리즘은 자연 선택과 유전적 성질에 기반을 둔 알고리즘으로 기존 방법으로는 쉽게 해결할 수 없는 어려운 문제에서도 성공적으로 적용되었다. 기존의 유전 알고리즘은 해 집단이 큰 경우 시간이 많이 걸리는 문제점이 있다. 병렬 유전 알고리즘은 이러한 문제를 해결하기 위하여 제안된 기존의 유전 알고리즘의 확장이라 할 수 있다. 병렬 유전 알고리즘에서 중요한 요소는 이주와 유전 연산으로 이를 적절하게 설계함으로서 좋은 결과를 얻을 수 있다. 본 논문에서는 퍼지 논리를 이용하여 기존의 병렬 유전 알고리즘을 개선하고자 한다.

A Proposal of Genetic Algorithms with Function Division Schemes

  • Tsutsui, Shigeyoshi
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.652-658
    • /
    • 1998
  • We introduce the concept of a bi-population scheme for real-coded GAs consisting of an explorer sub-Ga and an exploiter sub-GA. The explorer sub-GA mainly performs global exploration of the search space, and incorporates a restart mechanism to help avoid being trapped at local optima. The exploiter sub-GA performs exploitation of fit local areas of the search space around the neighborhood of the best-so-far solution. Thus the search function of the algorithm is divided. the proposed technique exhibits performance significantly superior to standard GAs on two complex highly multimodal problems.

  • PDF