
유 알고리즘을 이용한 최소 무게 삼각화 문제 연구 341

유 알고리즘을 이용한 최소 무게 삼각화 문제 연구

한 근 희
†
․김 찬 수

††

요 약

Minimum Weight Triangulation (MWT) 는 최 화 문제로서 주어진 그래 에 한 최소 무게 삼각화를 계산하는 문제이다. 본 문제는 많

은 다른 그래 문제들처럼 일반 그래 에 하여 NP-hard 계열의 문제로 알려져 있으며 지 까지 simulated annealing 유 알고리즘 등

heuristic algorithm 들이 제시되어 왔다. 본 논문에서는 MWT 문제에 하여 GA-FF 라 불리우는 새로운 유 알고리즘을 제시하며 한 그

성능이 기존의 유 알고리즘보다 더욱 효율 임을 보인다.

키워드 : 최소 무게 삼각화 문제, 유 알고리즘, 코달 그래

Solving Minimum Weight Triangulation Problem with Genetic Algorithm

Keunhee Han†․Chansoo Kim††

ABSTRACT

Minimum Weight Triangulation (MWT) problem is an optimization problem searching for the triangulation of a given graph with

minimum weight. Like many other graph problems this problem is also known to be NP-hard for general graphs. Several heuristic

algorithms have been proposed for this problem including simulated annealing and genetic algorithm. In this paper, we propose a new

genetic algorithm called GA-FF and show that the performance of the proposed genetic algorithm outperforms the previous one.

Key Words : Minimum Weight Triangulation, Genetic Algorithms, Chordal Graphs

1. Introduction1)

A graph G = (V, E) is called chordal if every cycle of

length strictly greater than three contains a chord, that is,

an edge joining two nonconsecutive vertices of the cycle.

Triangulation of a graph is an embedding of an arbitrary

graph G into a chordal graph by adding edges to G.

There are several versions of triangulation problems

depend on the parameters of graph properties. For an

arbitrary graph G = (V, E), a set of edges F is called a

filled edges if G' = (V, E∪F) is chordal and we denote

G' the filled graph. F is a minimal triangulation if G0 =

(V, E∪F0) is not chordal for any F0 ⊂ F. The minimum

triangulation problem is to find the triangulation of a

graph with fewest filled edges. The treewidth problem is

to find the triangulation of a graph with the size of largest

 † 종신회원:공주 학교 응용수학과 부교수
†† 정 회 원 :공주 학교 응용수학과 조교수(교신 자)
 논문 수 : 2008년 2월 14일
 수 정 일 : 2008년 4월 1일
 심사완료 : 2008년 4월 21일

clique minimized. Minimum triangulation has its applications

in the field of sparse matrix computations, database

management, knowledge based systems, and computer visions

[1] while the treewidth problem has its applications in the

field of artificial intelligence, database and VLSI design.

These two problems have been proved to be NP-hard [2, 3].

A related application of triangulation is also emerged

from the field of Bayesian Networks. In Bayesian networks,

after the causal networks are transformed into moral graphs

by linking all vertices (variables) with a common child,

moral graphs, which is now a general graph, must be

triangulated in order to facilitate the propagation of

evidence. Minimum Weight Triangulation (MWT) is a

triangulation of a graph G with minimum weight (defined

later) and a well known main obstacle for constructing

efficient Bayesian networks [4].

Since computing optimal MWT is NP-hard [5], any

exact algorithm require an exponentially increasing number

of steps as the problems become larger. Therefore, the

authors in [6] applied Genetic Algorithm (GA) to MWT

DOI: 10.3745/KIPSTB.2008.15-B.4.341

342 정보처리학회논문지 B 제15-B권 제4호(2008.8)

Algorithm: Elimination Game

Input: A graph G = (V, E) and an ordering α

= (v1,..., vn) of V.

Output: The filled graph G+(α)

1 G0 = G;

2 for i = 1 to n do

3 Let F
i = 1()i iG

D v− ;

4 Obtain Gi by adding the edges in Fi to

Gi-1 and removing vi;

5 G
+(α) = (V, E∪ 1

in
i F=∪);

(Fig. 1) Elimination Game.

① ②

③ ④ ⑤

⑧⑥

⑦

① ②

③ ④ ⑤

⑧⑥

⑦

① ②

③ ④ ⑤

⑧⑥

⑦
(a) (b) (c)

(Fig. 2) Applications of the algorithm Elimination Game. (a) a graph with 8 vertices. (b) α1 = (1, 2, 3, 4, 5, 8, 6, 7), W(G(α1))

= 5.32, (c) α2 = (2, 5, 4, 6, 1, 3, 8, 7), W(G(α2)) = 5.91. Dashed lines indicate the filled edges.

and showed very interesting results on two test graphs

called Sparse and Dense graphs. For the rest of this

paper we call the genetic algorithm proposed in [6] as

GA-MWT. In this paper, we develop a genetic algorithm,

called GA Fast Fill (GA-FF), that can be applied to

MWT problem and show that the results of GA-FF are

more efficient than GA-MWT.

The rest of this paper is organized as follows. In

section 2, we introduce the properties of minimum weight

triangulation and prove that testing for chordality of G –

e can be done efficiently, where G is a chordal graph and

e is an any edge of G. Section 3 and 4 contain the

properties and the experimental results of GA-FF, res-

pectively. Finally, section 5 contains the conclusions.

2. Minimum Weight Triangulation

2.1. Notations

For a graph G = (V, E) with |V| = n, an ordering of

V is a bijection α:{1, 2, ..., n} ↔ V. For the rest of this

paper G(α) denotes the ordered graph with some ordering

α = {v1, v2, ..., vn} on its vertex set. The neighborhood of

a vertex v of the graph G, denoted N(v), is the set

consisting of all vertices which are adjacent to v. The

closed neighborhood of a vertex v is defined as N[v] =

N(v) ⋃ {v}. We say that vertex v is a neighbor of

vertex w if v is adjacent to w in G. A vertex x of G is

called simplicial if N[x] induces a complete subgraph of

G. A perfect elimination ordering (peo) of a graph G is

an ordering of V with the property that for each i, j and

l, if i < j, i < l, and vi, vj ∈ N[vi], then vl ∈ N[vi]. It is

well known that a graph is chordal if and only if it

admits a perfect elimination ordering [7]. The deficiency

of vertex v in G is DG(v) = {(u, x)| u, x ∈ N(v) and (u,

x) ∉ E}. Note that if v is simplicial DG(v) = φ. A clique

in a graph is a set of pairwise adjacent vertices and

maximal clique of G is a clique and is not contained in

any other clique of G.

2.2. Properties of MWT

The algorithm shown in (Fig. 1) [1] is a well known

algorithm for the triangulation of graphs.

At each iteration i, since the algorithm forces vertex vi

to be a simplicial in Gi, clearly, the resulting graph G
+(α)

is a chordal graph. Therefore, the input ordering α becomes

a simplicial ordering of G+(α).

Let G = (V, E) be a graph and ni (< ∞) denotes the

number of states vertex vi (∈ V), then the minimum

weight triangulation problem is to minimize the weight of

G(α) computed as

W(G(α)) = 2log
iC v C in∈∑ ∏ , (2.1)

where C is the maximal cliques of filled graph G
+(α)

produced by the Elimination Game.

It is easy to see that for the different ordering of α's

the algorithm produces different filled graphs; hence possibly

different values of W(G(α)). For example, if we apply

Elimination algorithm with different orderings to the graph

shown in (Fig. 2) (a), they produce different values of

W(G(α)) as shown in (Fig. 2) (b) and (c). Note that the

유 알고리즘을 이용한 최소 무게 삼각화 문제 연구 343

graph shown in (Fig. 2(a)) is one of the standard Bayesian

networks developed in [8] with ni = 2, 1 ≤ i ≤ 8.

Note also that in (Fig 2.(b)) the maximal cliques are

{{1, 3}, {2, 4, 5}, {3, 4, 6}, {4, 5, 6}, {5, 6, 8}, {6, 7}} while

the maximal cliques of (Fig. 2(c)) are {{2, 4, 5}, {5, 4, 6,

8}, {4, 3, 6, 8}, {6, 7, 3, 8}, {1, 3}}.

The example in (Fig. 2(c)) clearly shows that the

algorithm Elimination Game does not necessarily produces

a minimal triangulation. Hence, let G
+(α) = (V, E∪F) be

a filled graph of a graph G = (V, E) where F is the

filled edges produced by Elimination Game. For any edge

e ∈ F if G' = (V, E∪(F – {e})) is chordal we say that

edge e is redundant. For example, in (Fig. 2(c)) the filled

edges (4, 8), (3, 8), (3, 7), and (7, 8) are redundant edges

while (b) contains no redundant edges. If we remove these

redundant edges from (Fig. 2(b)) then W(G(α2)) reduces

to 5.32.

Let G1 = (V, E∪F1) and G2 = (V, E∪F2) be two

triangulations of a graph G = (V, E) where F1 and F2

are the filled edges of G1 and G2, respectively. In [9], the

authors proved that if F1 ⊂ F2, then W(G1) ≤ W(G2)

and most often W(G1) is far less than W(G2). Therefore,

the main idea of GA-FF is to remove as many redundant

edges as possible after constructing triangulation of a

graph G with the algorithm Elimination Game.

However, since not all the filled edges are redundant,

removing redundant edges requires checking for chordality

of a graph. Lexicographic Breadth-First Search (LexBFS)

[7] and Maximum Cardinality Search (MCS) [10] are the

two best known algorithms for recognizing chordal graphs

and both run in time O(|V| + |E|) for a given graph G =

(V, E). However, if a graph is dense then |E| ∈ O(|V|
2),

both algorithms are too expensive for genetic algorithms.

To overcome these bottlenecks we need to closely examine

the neighbors of the edge in question. Let Cn be the

chordless cycle of length n (≥ 3).

Theorem 2.1 [7]. Let G be a chordal graph with edge (u,

v). Then either G – (u, v) is chordal or G – (u, v) contains

a C4.

Corollary 2.1. Let G = (V, E) be a chordal graph with

edge (u, v). Then G – (u, v) is a chordal graph if and only

if u, v have no two common neighbors x and y such that

(x, y) ∉ E.

Proof: (←) Let u, v have no common neighbors x and y

such that (x, y) ∉ E and suppose that G – (u, v) is not

chordal. Then, by theorem 2.1, G – (u, v) contains a C4. Let

[u, s, v, t] be such C4. However, this is a contradiction

since (s, v) ∈ E. (→) Let G – (u, v) be chordal and suppose

that u, v have two common neighbors s and t such that

(s, t) ∉ E. However, this is a contradiction to our assumption

that G – (u, v) is chordal since [u, s, v, t] is a C4 in G

– (u, v).

The adjacency (0,1)-matrix M = M[i,j] of a graph G

with n vertices is the n x n matrix in which M[i,j] = 1

if vertex i is adjacent with vertex j and M[i,j] = 0

otherwise. Based on Corollary 2.1, the procedure called

isChordal() shown in (Fig. 3) can be used to check

whether or not an edge can be removed while preserving

the chordality of a chordal graph G.

Let Δ = max |N(u)∩N(v)| for all u, v ∈ V of a graph

G = (V, E). Assuming that the graph is represented by

an adjacency (0,1)-matrix M, constructing the set S =

N(u)∩N(v) can be done in O(|V|) and checking for the

existence of nonadjacency among the vertices in S can be

done in O(Δ2). Therefore, Theorem 2.2 suggests an algorithm

that can be used to check if an edge can be removed

from a chordal graph while maintaining the chordality

with running time in O(|V| + Δ2). Theoretically, Δ ∈

O(|V|); however, in practice, Δ is much smaller than |V|.

procedure isChordal(M, (u, v))

1 Let S = N(u)∩N(v)

// S is set of common neighbors of u and v

2 for i = 1 to |S| - 1

3 for j = i + 1 to |S|

4 if (M[S[i], S[j]] ≠ 1)

5 return false;

6 end for

7 end for

8 return true;

(Fig. 3) Procedure isChordal(M, (u, v)), where M is a (0-1)

adjacency matrix of G and (u, v) is an edge of G.

3. Genetic algorithm for MWT

As noted in [6], in some sense, MWT is similar to the

Travelling Salesman Problem (TSP). In TSP, we search

for the optimum order of cities that yields the shortest

tour of n cities. In contrast, in MWT, we search for the

optimum order of vertices to eliminated that produces the

minimum weight. TSP is one of the most widely researched

problem in GA community.

Several representations and genetic operators have been

developed for TSP with GA. Path representation [11] is a

permutation of [n], where [n] denote the set of all possible

natural numbers not greater than n. GA-FF uses path

representation in order to represent the different ordering

344 정보처리학회논문지 B 제15-B권 제4호(2008.8)

Algorithm GA-FF

1 t = 0;

2 initialize population P(t);

3 evaluate_P(t);

4 while not termination-condition do

5 t = t + 1;

6 select P(t);

7 crossover P(t);

8 mutate P(t);

9 evaluate_P(t);

// see Fig. 5

10 end

(Fig. 4) Pseudo code of GA-FF.

procedure evaluate_P(t)

1 for each chromosome α of P(t)

2 apply Elimination Game with α to G

3 for each filled-edge e of 1
in

i F=∪

// filled-edges are selected at random order

4 if isChordal(G+(α), e) then

5 delete edge e from G+(α)

6 end for

7 end for

(Fig. 5) Pseudo code of the procedure evaluate_P(t).

α's of a graph G. For the genetic operators we adapt Cycle

crossover (CX) and Simple Inversion mutation (SIM). The

mechanisms of these two genetic operators are well

known and can be found in [6, 11]. In CX every vertex

of the offspring comes from one of the parents. For

example, consider the following two parents p1 and p2:

p1 = (1 2 3 4 5) and

p2 = (3 1 2 5 4).

The first vertex of the offspring o1 takes the first

vertex of p1. Therefore, o1 becomes (1 * * * *), where *

represents “not yet decided”. Since the vertex 3 of p2 is

just below the vertex 1 of p2 we consider vertex 3 of p2.

The vertex 3 is in the third position of p1; hence o1

becomes (1 * 3 * *). In this way, the next vertex to be

considered must be 2 and o1 becomes (1 2 3 * *). With

this rule the next vertex to be considered must be 1;

however, vertex 1 is already on o1. Therefore, the remaining

vertices are filled from the p2. The final list of o1 is as

follows:

o1 = (1 2 3 5 4).

Simple inversion mutation (SIM) selects two cut points

randomly and reverse the vertices between these two cut

points. For example, let c = (1 2 3 4 5) be a chromosome

and suppose that the second and fourth positions are

selected as the cut points. Then result chromosome is c =

(1 4 3 2 5).

We use formula (2.1) as our fitness function. For selection

we use roulette wheel with slots sized according the fitness

of each chromosome. Eliticism is a variation of simple

selection of genetic algorithms. It enforces to preserve the

best chromosome found so far in the iteration of the

algorithm. Let P(t) be the population at time t. In GA-FF,

after selection, if P(t) does not contain the best chromosome

best of P(t – 1), then the worst chromosome of P(t) is

replaced by best, where t > 0.

We showed that, in the previous section, for different

ordering α's of the vertices the Elimination Game yield

different weights of the graph. Hence, for a given ordering

α, GA-FF first execute the Elimination Game on G(α)

and try to remove redundant edges from the filled graph

G
+(α) using Corollary 2.1. (Fig. 4) and (Fig. 5) show the

details of GA-FF and procedure evaluate_P(t).

If we replace the evaluate_P(t) by a usual evaluation

procedure, i.e., does not remove any redundant edges,

then GA-FF becomes the same as GA-MWT. Therefore,

the major difference between GA-MWT and GA-FF lies

on the evaluation of the chromosomes. After we apply

Elimination Game to each chromosome in line 2 of pro-

cedure evaluate_P(t), all the filled-edges produced by line

2 are checked whether or not they can be removed while

preserving the chordality of G
+(α) in line 3 and 4 of the

algorithm. If the procedure isChordal(G+(α), e) of line 4

confirms that e is a redundant edge then line 5 deletes e.

4. Experiments

Two test graphs called Sparse and Dense graph which

contain 50 vertices each, and 100 and 359 edges, respectively,

were used to measure the performance of GA-MWT. These

two graphs were originally developed by Kjaerulff [9].

For both graphs the number of states were chosen at

random between 2 and 5. See [6] for more details about

the graphs and the number of states used for testing

GA-MWT.

In [6], GA-MWT was executed with numerous number

of genetic operators; partially-mapped (PMX), cycle (CX),

order (OX1), order-based (OX2), position-based (POS), genetic

edge recombination (ER), voting recombination (VR),

alternating-position (AP) crossover, and displacement (DM),

exchange (EM), insertion (ISM), simple-inversion (SIM),

inversion (IVM), scramble (SM) mutation operators. However,

유 알고리즘을 이용한 최소 무게 삼각화 문제 연구 345

since, in [6], the best results were obtained from the CX

for both test graphs we summarize only those results of

applying CX in <Table 1 and 2>, respectively. Note that

the termination condition used for GA-MWT is based on

the definition of convergence of a population formulated

by De Jong [12].

<Table 3 and 4> contain the results of applying

GA-FF with cycle crossover (CX) and simple inversion

mutation (SIM) on Sparse and Dense graphs, respectively.

We do not include the results of other combinations of the

genetic operators since their performance are very similar

to the results of the combination of CX + SIM. We ran

the algorithms with different size of population λ (10, 50

and 250) and mutation rate pm (0.01, 0.05 and 0.08). For

the termination condition of GA-FF we used fixed

number of iterations; it is set to 10,000. Average values

<Table 1> Results obtained in [6] with Sparse graph, respectively:

the best, average and worst evaluation found among

the 10 executions of the algorithm, the average number

of iterations of the algorithm before convergence.

λ DM EM ISM SIM IVM SM

CX

10

22.62

23.41

26.04

7,327

22.63

23.43

25.47

7,104

22.63

23.56

25.98

6,831

22.61

23.39

26.64

8,233

22.66

23.54

25.33

6,656

22.64

23.62

28.11

7,028

50

22.61

22.82

23.42

40,056

22.61

22.80

23.30

39,131

22.61

22.82

24.19

40,580

22.61

22.82

24.08

40,233

22.61

22.81

24.29

39,311

22.61

22.81

24.08

40,509

250

22.61

22.69

22.95

126,750

22.61

22.71

23.28

128,388

22.61

22.70

22.85

127,751

22.61

22.71

23.55

133,450

22.61

22.71

23.28

124,763

22.61

22.69

22.88

126,973

<Table 2> Results obtained in [6] with Dense graph, respectively:

the best, average and worst evaluation found among

the 10 executions of the algorithm, the average number

of iterations of the algorithm before convergence.

λ DM EM ISM SIM IVM SM

CX

10

50.91

52.69

56.64

10,318

50.88

52.54

55.72

10,287

50.88

52.27

56.38

100,68

50.88

52.59

56.01

10,751

50.88

52.67

56.66

10,193

50.88

52.60

57.51

11,011

50

50.88

51.88

54.44

24,038

50.88

51.77

54.49

25,499

50.88

51.66

54.54

25,597

50.88

51.73

55.36

25,788

50.88

51.93

55.07

24,771

50.88

51.73

54.63

24,873

250

50.88

51.09

52.70

82,688

50.88

51.14

53.01

89,069

50.88

51.09

52.70

86,897

50.88

51.06

51.91

82,104

50.88

51.08

52.39

81,019

50.88

51.07

52.70

84,865

<Table 3> Results obtained with Sparse graph by applying GA-FF,

respectively: the best, average and worst evaluation

found from the 30 executions of the algorithm.

λ
pm

0.01 0.05 0.08

10

22.61

22.67

22.76

22.61

22.66

22.73

22.61

22.67

22.79

50

22.61

22.66

22.73

22.61

22.66

22.73

22.61

22.66

22.73

250

22.61

22.64

22.73

22.61

22.64

22.66

22.61

22.65

22.66

<Table 4> Results obtained with Dense graph by applying GA-FF,

respectively: the best, average and worst evaluation

found from the 30 executions of the algorithm.

λ
pm

0.01 0.05 0.08

10

50.88

51.07

51.58

50.88

51.01

51.58

50.88

51.04

51.58

50

50.88

50.88

50.88

50.88

50.89

51.14

50.88

50.88

50.88

250

50.88

50.88

50.88

50.88

50.88

50.88

50.88

50.88

50.88

of the tables are the results of executing the algorithm 30

executions.

<Table 3 and 4> show that the best evaluations found

by GA-FF are 22.61 and 50.88 for Sparse and Dense

graphs, respectively. These two values were also found

by GA-MWT as shown in <Table 1 and 2>. Even though

it can not be verified theoretically, supported by our extensive

experiments and the results of GA-MWT, we conjecture

that the minimum weight of Sparse and Dense graphs

are 22.61 and 50.88, respectively. Note that these two

values were also obtained in [9] by Simulated Annealing.

However, <Table 3 and 4> show that GA-FF always

found these conjectured optimum evaluations even when

λ = 10. Furthermore, if we compare the values of the worst

and average evaluations in <Table 1 and 2> and <Table

3 and 4>, it is evident that the performance of GA-FF is

much more stable than the one of GA-MWT. For example,

the last row of <Table 4> shows that GA-FF always

find the conjectured optimum evaluation of 50.88 for all

the 30 executions for Dense graph when λ = 250. <Table

3 and 4> also show that for the three different mutation

346 정보처리학회논문지 B 제15-B권 제4호(2008.8)

rate the results are very similar. It is hard to decide any

optimal mutation rate. Therefore, we conclude that

GA-FF is not sensitive to the mutation rate pm.

5. Conclusions

In this paper we developed a genetic algorithm that

can be applied to the minimum weight triangulation

problems. Elimination game is an efficient tool for

embedding arbitrary graph G into a chordal graph by

adding additional edges to G. However, the resultant

chordal graphs may contain redundant edges. By

removing these redundant edges from the filled graphs

we showed that the proposed genetic algorithm shows

very stable results on two test graphs.

There are other ways of solving minimum weight

triangulation problems, e.g., finding minimal triangulation

using clique trees of graphs. Therefore, it will be quite

interesting to compare the results of these different

methods of computing minimum weight triangulation with

genetic algorithms.

Reference

[1] Pinar Heggernes, “Minimal triangulations of graphs: A

survey,” Discrete Mathematics 306, pp.297-317, 2006.

[2] S. Arnborg, D.G. Corneil, A Proskurowsi, “Complexity of

finding embeddings in a k-tree,” SIAM J. Algebraic Discrete

Methods 8, pp.277-284, 1987.

[3] M. Yannakakis, “Computing the minimum fill-in is NP-

complete,” SIAM J. Algebraic Discrete Methods 2, pp.77-79,

1981.

[4] Finn V. Jensen, “An introduction to Bayesian networks,”

UCL Press, 1996.

[5] Wen, W. X., “Optimal decomposition of belief networks,” In

Uncertainty in Artificial Intelligence 6 (P. P. Bonissone, M.

Henrion, L. N. Kanal, and J. F. Lemmer, eds), North-Holland,

Amsterdam, pp.209-224, 1990.

[6] Pedro Larraňaga, Cindy M. H. Kuijpers, Milel Poza and

Roberto H. Murga, “Decomposing Bayesian networks:

triangulation of the moral graphs with genetic algorithm,”

Statistics and Computing 7, pp.19-34, 1997.

[7] D.J. Rose, R.E. Tarjan and G.S. Lueker, “Algorithmic

aspects of vertex elimination on graphs,” SIAM J. Comput.

5, pp.266-283, 1976.

[8] Norsys Software Corp., http://www.norsys.com, 2006.

[9] Uffe Kjaerulff, “Triangulation of graphs – Algorithms giving

small total state space,” Research Report R-90-09, Department

of Computer Science, Aalborg University, 1990.

[10] Tarjan, Robert Endre, “Maximum Cardinality Search and

chordal graphs,” Stanford Univ. Unpublished Lecture Notes

CS 259.

[11] Zbigniew Michalewicz, “Genetic Algorithms + Data Structures

= Evolution Programs,” Springer-Velag, Berlin, 1992.

[12] De Jong, K. A., An analysis of the behavior of a class of

genetic adaptive systems, Ph.D. Dissertation, University of

Michigan, 1975.

한 근 희

e-mail：kehan@kongju.ac.kr

1986년 건국 학교 물리학과 졸업(학사)

1992년 Univ. of Central Oklahoma

응용수학과 졸업(이학석사)

1996년 Univ. of Oklahoma 컴퓨터과학과

졸업(이학박사)

1996년～2000년 한국 자통신연구원

1999년～2000년 미국 NIST 객원연구원

2000년～ 재 공주 학교 응용수학과 부교수

심분야：그래 알고리즘, Genetic Algorithm

김 찬 수

e-mail：chanskim@kongju.ac.kr

1991년 부산 학교 산통계학과 졸업

1997년 부산 학교 통계학과

졸업(이학박사)

2002년～ 재 공주 학교 응용수학과

조교수

심분야：베이지안 네트워크, 유 알고리즘

