• Title/Summary/Keyword: Generator stator

Search Result 338, Processing Time 0.03 seconds

Fault Diagnosis of a Voltage-Fed PWM Inverter for a Three-parallel Power Conversion System in a Wind Turbine

  • Ko, Young-Jong;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.686-693
    • /
    • 2010
  • In this paper, a fault diagnosis method based on fuzzy logic for the three-parallel power converter in a wind turbine system is presented. The method can not only detect both open and short faults but can also identify faulty switching devices without additional voltage sensors or an analysis modeling of the system. The location of a faulty switch can be indicated by six-patterns of a stator current vector and the fault switching device detection is achieved by analyzing the current vector. A fault tolerant algorithm is also presented to maintain proper performance under faulty conditions. The reliability of the proposed fault detection technique has been proven by simulations and experiments with a 10kW simulator.

Optimized Current Control considering Inductance Variations after Grid Connection of DFIG Stator (DFIG의 고정자 계통연계시 인덕턴스 변동을 고려한 최적 전류제어)

  • Shin, Soo-Cheol;Yu, Jae-Sung;Hong, Jung-Ki;Song, Seung-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.202-205
    • /
    • 2008
  • 본 논문은 이중여자 발전기를 사용하는 풍력발전기에서 안정적인 계통투입을 위한 계통연계 전 후 발전기의 인덕턴스 변화에 따른 전류제어기 이득 값 선정에 대하여 연구하였다. DFIG(Doubly Fed Induction Generator)방식을 이용하는 풍력발전기는 회전자 전류제어를 함으로써 고정자의 전압을 제어하고, 제어된 고정자 전압은 계통과 연결된다. 특히 회전자 전류제어기 성능은 LVRT(Low Voltage Ride Through)등 예상하지 않은 외란에 대하여 빠른 응답성을 필요로 한다. 그러나 발전기가 계통과 연계되는 순간 발전기의 내부 파라미터 값의 변동이 발생하며, 이는 계통 투입 전 발전기 파라미터에 근거한 RSC(Rotor Side Converter)측 전류제어기 이득 값에 영향을 미쳐, 전류제어가 불안정하게 하는 원인이 되거나, 전류제어 응답성을 낮추게 하는 요인이 된다. 따라서, 본 연구에서는 계통투입 전 후의 RSC측 전류제어기의 이득 값을 달리하여 안정적인 계통 투입이 가능하도록 하는 알고리즘을 시뮬레이션과 실험으로 증명하였다.

  • PDF

Grid-connected Inverter Control Algorithm for Torque Ripple Compensation in Doubly-Fed Induction-type Wind Power Generation System (전원 전압 불평형시 이중여자 유도형 풍력발전 시스템의 토크 리플 저감을 위한 계통연계 인버터 제어 알고리즘)

  • Jeong, Byoung-Chang;Song, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.317-319
    • /
    • 2005
  • In this paper, control algorithm for torque ripple compensation in DFIG wind power generation system is proposed. A simple PI controller is designed for the negative sequence voltage cancellation using negative sequence currents in the grid-side converter. As a result, the stator voltage contains only the positive sequence components and the torque pulsation of the generator is effectively compensated. Propose algorithm is confirmed with PSCAD simulation model.

  • PDF

Dynamic Analysis of Doubly Fed Induction Generators for Wind Power System (풍력 발전시스템을 위한 유도 발전기의 동특성해석)

  • Jang, Seok-Myeong;Choi, Jang-Young;Moon, Jeong-Sul;You, Dae-Joon;Lee, Jeong-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1753-1755
    • /
    • 2005
  • This paper deals with the dynamic analysis of doubly-fed induction generators for wind power system. The 3-phase voltage equations for stator and rotor of doubly-fed induction generator (DFIG) are derived and then, the equivalent circuit and mechanical output power of induction generators are obtained by converting the 3-phase voltage into do voltage equation. Finally, the dynamic characteristics such as torque, speed and voltage for rotor of DFIG are presented, for the case when wind is considered.

  • PDF

Thermal, Electrical Characteristics according to Contents Variation of Epoxy/Organoclay Nanocomposites for High Voltage Insulation (고압절연용 Epoxy/Organoclay Nanocomposites의 열적, 전기적 특성에 관한 연구)

  • Park, Jae-Jun;Ahn, Ju-No
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.226-227
    • /
    • 2007
  • Nanostructured materials are attracting increased interest and application. Exciting perspectives may be offered by electrical insulation. Epoxy/Organoclay nanocomposites may find new and upgraded applications in the electrical industry, replacing conventional insulation to provide improved performances in electric power apparatus, e.g, high voltage motor/generator stator winding insulation, dry mold transformer, etc. This paper shows that electrical and thermal properties of epoxy/organoclay nanocomposites insulating materials for dsc, dielectric constant, I-V characteristics, breakdown volatge, can improve significantly with respect to the basic, virgin materials.

  • PDF

Performance Tests of 1 MW Class HTS Synchronous Motor (1 MW 급 고온초전도 동기 모터 특성 평가)

  • Baik, S.K.;Kwon, Y.K.;Kim, H.M.;Lee, E.Y.;Lee, J.D.;Kim, Y.C.;Moon, T.S.;Park, H.J.;Kwon, W.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.57-61
    • /
    • 2008
  • A 1MW class HTS(High-Temperature Superconducting) synchronous motor has been developed. This motor was aimed to be utilized for industrial application such as large motors operating in large plants. The HTS field windings of the developed motor is cooled by way of Neon thermosiphon mechanism and the stator coil is cooled by water through hollow copper conductor. This paper describes performance test results of our motor, which was conducted at steady state in generator mode and motor mode.

Development of Tacho Generator for Application of Anti-aircraft Weapon System (대공무기체계 적용을 위한 타코제너레이터 개발)

  • Byun, Kisik;Park, Jun Young;Cho, Sung-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.174-180
    • /
    • 2020
  • This paper presents the development of a tacho generator that is applicable to a DC motor for anti-aircraft weapon systems. In general, devices such as tacho generators and resolvers are used as feedback devices for controlling DC motors. A tacho generator with a wide operating temperature range was developed, which has robust characteristics against shock loads and vibrations according to the operational characteristics of anti-aircraft weapon systems. The target specifications were set based on the requirements of the tacho generator currently in operation. A rotor coupled to the shaft of the motor and a stator coupled to the housing of the motor were then designed and manufactured. The inductance was 31.0 mH, the terminal resistance was 147.7 ohms, and the rotational measurement factor was satisfactory under both normal operation and operating conditions after the maximum speed for the standard of 9.500 ± 0.475 V/krpm. In addition, the environmental suitability of the applied equipment was confirmed through the rate of change in unit temperature, and it was found that the temperature characteristics were all within 0.03 %/℃.

Development and Performance Test of a l00hp HTS Motor

  • Sohn, M.H.;Baik, S.K.;Lee, E.Y.;Kwon, Y.K.;Yun, M.S.;Moon, T.S.;Park, H.J.;Kim, Y.C.;Ryu, K.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.27-31
    • /
    • 2004
  • This paper describes the development and fabrication of a high temperature superconducting motor which consists of HTS rotor and air-core stator. The machine was designed for the rated power of 100hp at 1800 rpm. The HTS field windings are composed of the double-pancake coils wound with AMSC's SUS-reinforced Bi-2223 tape conductor. These were assembled on the support structure and fixed by a bandage of glass-fiber composite. The cooling system is based on the heat transfer mechanism of the thermosyphon by using GM cryocooler as cooling source. The cold head is in contact with the condenser of a Ne-filled thermosyphon. The rotor assembly was tested independently at the stationary state and combined with stator. Characteristic parameters such as reactances, inductances, and time constants were determined to obtain a consistent overview of the machine operation properties. This motor has met all design parameters by demonstrating HTS field winding, cryogenic refrigeration systems and an air-core armature winding cooled with air. The HTS field winding could be cooled down below 30K. No-load test of open-circuit characteristics(OCC) and short-circuit characteristics(SCC) and load test with resistive load bank were conducted in generator mode. Maximum operating current of field winding at 30K was 120A. From OCC and SCC test results synchronous inductance and synchronous reactance were 2.4mH, 0.49pu, respectively. Efficiency of this HTS machine was 93.3% in full load(100hp) test. This paper will present design, construction, and basic experimental test results of the 100hp HTS machine.

Development of a 100 hp HTS Synchronous Motor (100마력 고온초전도 동기전동기 개발)

  • Sohn Myung-Hwan;Baik Seung-Kyu;Lee Eon-Young;Kwon Young-Kil;Jo Young-Sik;Kim Jong-Moo;Moon Tae-Sun;Kim Yeong-Chun;Kwon Woon-Sik;Park Heui-Joo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.2
    • /
    • pp.94-100
    • /
    • 2005
  • Korea Electrotechnology Research Institute(KERI) has successfully developed a 100hp-1800rpm-class high temperature superconducting(HTS) motor with high efficiency under partnership with Doosan Heavy Industries & Construction Co. Ltd. This motor has a HTS field winding and an air-cooled stator. The advantages of HTS motor can be represented by a reduction of 50% in both losses and size compared to conventional motors of the same rating. The cooling system is based on the heat transfer mechanism of the thermosyphon by using GM cryocooler as cooling source. The cold head is in contact with the condenser of a Ne-filled thermosyphon. Independently, the rotor assembly was tested at the stationary state and combined with stator. The HTS field winding could be cooled into below 30K. Test of open-circuit characteristics(OCC) and short-circuit characteristics(SCC) and load test with resistive load bank were conducted in generator mode. Also, load tests in motor mode driven by inverter were finished at KERI. Maximum operating current of field winding at 30K was 120A. From OCC and SCC test results synchronous inductance and synchronous reactance were 2.4mH, 0.49pu, respectively. Efficiency of this HTS machine was 93.3% in full load(100hp) test. This paper will present design, construction. and experimental test results of the 100hp HTS machine.

On/Off-Design/Transient Analysis of a 50KW Turbogenerator Gas Turbine Engine (50KW 터보제너레이터용 가스터빈 엔진의 설계점/ 탈설계/과도성능해석)

  • Kim, Su-Yong;Park, Mu-Ryong;Jo, Su-Yong
    • 연구논문집
    • /
    • s.27
    • /
    • pp.87-99
    • /
    • 1997
  • Present paper describes on/off design performance of a 50KW turbogenerator gas turbine engine for hybrid vehicle application. For optimum design point selection, relevant parameter study is carried out. The turbogenerator gas turbine engine for a hybrid vehicle is expected to be designed for maximum fuel economy, ultra low emissions, and very low cost. Compressor, combustor, turbine, and permanent-magnet generator will be mounted on a single high speed (82,000 rpm) shaft that will be supported on air bearings. As the generator is built into the shaft, gearbox and other moving parts become unnecessary and thus will increase the system's reliability and reduce the manufacturing cost. The engine has a radial compressor and turbine with design point pressure ratio of 4.0. This pressure ratio was set based on calculation of specific fuel consumption and specific power variation with pressure ratio. For the given turbine inlet temperature, a rather conservative value of $1100^\circK$ was selected. Designed mass flow rate was 0.5 kg/sec. Parametric study of the cycle indicates that specific work and efficiency increase at a given pressure ratio and turbine inlet temperature. Off design analysis shows that the gas turbine system reaches self operating condition at N/$N_{DP}$ = 0.53. Bleeding air for turbine stator cooling is omitted considering low TIT and for a simple geometric structure. Various engine performance simulations including, ambient temperature influence, surging at part load condition. Transient analysis were performed to secure the optimum engine operating characteristics. Surge margin throughout the performance analysis were maintained to be over 80% approximately. Validation of present results are yet to be seen as the performance tests are scheduled by the end of 1998 for comparison.

  • PDF