Proceedings of the Korean Operations and Management Science Society Conference
/
1996.04a
/
pp.104-107
/
1996
This paper focuses on a automation selection of optimal cutting conditions and cycle time for multi-spindle metal cutting machines based on machining parameters and tool change schemes which are the two most common terms used in the metal cutting. In this research we used two step generative approach, step 1 is mathematical modeling for the selection fo optimal cutting conditions and the other is GMDH-Type modeling to estimate the system performance evaluation. We developed computer programs for these models and the fitting manufacturing examples are applied to this model and it was shown that the proposed approach has a good potential and offers a valuable tools to analyse the metal cutting system.
Proceedings of the Korean Society of Precision Engineering Conference
/
1996.04a
/
pp.689-693
/
1996
This paper was performed on the automatic selection of cutting condition on multispindle machine. the several mathematical relationships were formulated for simulataneous selection of machining parameters and tool changing scheme. In this research we used two step generative approach; step 1 is mathematical modeling for the selection of optimal cutting conditions and the other is GMDH-TYPE modeling to find prediction equation of system performance. thus in this paper, mathematical machining models combined with a heuristic GMDH-TYPE modeling to estimate the system performance, these models are developed computer programs for practical application and it was shown that the proposed approach has a good potential and offers a valuable tools to performance evaluation for metal cutting system.
Since the launch of ChatGPT, many college students used it extensively in various ways in their curricular learning activities. This study investigates the utilization of ChatGPT in the curriculum of first and second-year engineering students, aiming to examine its influence from a learner perspective. We explored how ChatGPT is used in each subject and learning activity to understand how learners perceive the use of ChatGPT. From the survey data on engineering college students at E university, we examined students' perception on 'shortening time to perform tasks' through ChatGPT, 'dependence on ChatGPT', 'their contribution to individual capacity building', and 'their influence on academic grade'. The majority of students reported extensive use of ChatGPT for learning activities, particularly showing high dependency in liberal arts subjects and coding-related activities. While the use of ChatGPT in liberal arts was seen as not contributing to the enhancement of individual capacity, its use in coding was positively evaluated. Furthermore, the contribution of ChatGPT to the creativity in report writing tasks was highly rated. These findings offer several important implications for the use of AI tools like ChatGPT in engineering education. Firstly, the positive impact of ChatGPT's high usability and individual-capacity enhancement in coding should be expanded to other areas of learning. Secondly, as AI technology progresses, the contribution of AI tools compared to learners is expected to increase, suggesting that students should be encouraged to effectively use AI tools to achieve their learning objectives while maintaining a balanced approach to avoid overreliance on AI.
An, Sojung;Lee, O-jun;Lee, Jung-Hyeon;Jung, Jason J.;Yong, Hwan-Sung
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2019.05a
/
pp.79-82
/
2019
This study aims to design and implement automated SEO tools that has applied the artificial intelligence techniques for search engine optimization (SEO; Search Engine Optimization). Traditional Search Engine Optimization (SEO) on-page optimization show limitations that rely only on knowledge of webpage administrators. Thereby, this paper proposes the metadata generation system. It introduces three approaches for recommending metadata; i) Downloading the metadata which is the top of webpage ii) Generating terms which is high relevance by using bi-directional Long Short Term Memory (LSTM) based on attention; iii) Learning through the Generative Adversarial Network (GAN) to enhance overall performance. It is expected to be useful as an optimizing tool that can be evaluated and improve the online marketing processes.
The study was intended to investigate production tools and conditions of oil spot following calculating optimal composition of oil spot tenmoku glaze which can be produced at 1250$\sim$l260$^{\circ}C$. Since oil spot is influenced by the viscosity of glaze, viscosity of various glazes fit for oil spot production was determined by an SciGlass 6.0-based calculating method. Applied amount and calcinating conditions of the resulting substance of oil spot, $Fe_2O_3$, were analyzed. As a result, the viscosity of the glaze durable at 1260$^{\circ}C$ was found to range from 4.2 to 4.4, natural cooling was used after oxidizing calcinations at 1260$^{\circ}C$ for an hour, and the best oil spot tenmoku was produced by the natural cooling process after 1 h calcinations at 1150$^{\circ}C$ in the middle of natural cooling. Also, the study showed that thickness of glaze was found to have an effect on the production of oil spot and resulting oil spot was filled mostly with $Fe_2O_3$.
Precast concrete manufacturing has proved economies of scale through the repetitive production by means of standardization, automation, and prefabrication. Advanced digital design and fabrication technologies can empower its benefits by enabling mass customization in the building design and construction. This study analyzed five case studies in terms of 1) design intent and background, 2) module development and facade construction, 3) integrated process among project stakeholder. This article has attempted to establish the following three points in conclusion: 1) Form generating digital design tools such as Rhino, CATIA, Generative Component, and Digital Project were implemented to produce parametric surface pattern and rationalization to maximize existing precast manufacturing benefits. Also, BIM program has been used to promote coordination and communication among engineering consultants and contractors, 2) In addition to traditional precast concrete materials, GFRC, RFP, brick cladding precast and 3D printed mould have been introduced to reduce the weight and cost and to comply the code from the zoning, seismic, and fireproof requirements, 3) Design-assist contract, design-assist financial support, and co-location measures have been introduced to facilitate collaboration between architect, fabricator, and contractor from the beginning of the project.
Jiyun Hong;Jiwon Lee;Somin Lee;Eun Ko;Gyubin Kim;Jungwoon Kang;Mincheol Kim
Journal of information and communication convergence engineering
/
v.22
no.3
/
pp.221-230
/
2024
The aim of this study is to investigate the automatic recognition and analysis of Jeju marine-life images using artificial intelligence (AI) technology. The dataset of marine-life images was prepared using tools such as Python, TensorFlow, and Google Colab (Google Colaboratory). We also developed models by training deep learning AI in image recognition to automatically recognize the species found in these images and extract their associated information, such as taxonomy, characteristics, and distribution. This study is innovative in that it uses deep learning technology combined with imagerecognition technology for marine biodiversity research. In addition, these results will lead to the development of the marine-life industry in Jeju by supporting marine environment monitoring and marine resource conservation. Furthermore, this study is anticipated to contribute to academic advancement, specifically in the study of marine species diversity.
Motivation is a generative power of making learning interesting and sustaining learning for students. Textbooks are important tools in carrying out lessons. And it is meaningful to analyze how textbooks motivate learning. This study is to analyze components of motivation in learning of the 7th grade middle school science textbooks. Keller's ARCS model was used for the analysis. The result of the study is as follows. First, the eight textbooks had various components from A1 to R3. Second, analyzing textbooks by parts of the textbooks, the body had the most motivation strategies and the next was the introduction, lastly the finishing part. Third, the most frequently used strategy on the attention factor is A1. And the most frequently used strategy in the relevance factor is R3.
Journal of the Korean Society of Clothing and Textiles
/
v.34
no.12
/
pp.1980-1991
/
2010
This study proposes the O P E N Triad framework as a future set of tools and perspectives for individual members and institutes to further their professional and academic potential as well as prospect and vitalize the future of the Korean Clothing and Textiles discipline through a global perspective. The millennial generation desires On-demand, Personal, Engaging, and Networked (O P E N) experiences effecting cultural change for creative and influential interaction in transactions, communication, and education. O P E N Individuals offers a WebSphere model as a holistic learning system that has a synergizing value of education across academic courses, industries, and cultures. Through a digitalized and virtualized class, it complements relevant technologies already familiar to the student population. By employing environmental scanning approaches, the most influential and viable future global issues related to the clothing and textiles discipline are identified and dialogued within O P E N Institutes. For future clothing and textiles institutes, this scanning allows them to be open to new ideas, to focus on inter-engagements, to collaborate among individuals, to associate as a part of web of people, organizations, and ideas, to personalize an institutes curricula, and to dialogue generative knowledge. O P E N Industries reveals three dominant future issues that cross academia and industry, sustainability, supply chain management, and social networking. In-depth interviews with U.S. industry experts identified interdependent gaps in global consumer experience practices and suggested the following gaps as future research areas: a standardized business model to the entrepreneurial model, strategic management to a sustainable competitive advantage, standardized to differentiated products, services and operations, market segmentation to global consumer clusters, business-driven marketplaces to consumer-engaged marketspaces, and excellent services to optimal experience. This O P E N Triad framework empowers millennial students, universities, and industries to anticipate and prepare for a radically changing world.
ChatGPT, a chatbot based on GPT large language models, has gained immense popularity among the general public as well as domain professionals. To assess its proficiency in specialized fields, ChatGPT was tested on mainstream exams like the bar exam and medical licensing tests. This study evaluated ChatGPT's ability to answer questions related to Building Information Modeling (BIM) by testing it on Korea's BIM expertise exam, focusing primarily on multiple-choice problems. Both GPT-3.5 and GPT-4 were tested by prompting them to provide the correct answers to three years' worth of exams, totaling 150 questions. The results showed that both versions passed the test with average scores of 68 and 85, respectively. GPT-4 performed particularly well in categories related to 'BIM software' and 'Smart Construction technology'. However, it did not fare well in 'BIM applications'. Both versions were more proficient with short-answer choices than with sentence-length answers. Additionally, GPT-4 struggled with questions related to BIM policies and regulations specific to the Korean industry. Such limitations might be addressed by using tools like LangChain, which allow for feeding domain-specific documents to customize ChatGPT's responses. These advancements are anticipated to enhance ChatGPT's utility as a virtual assistant for BIM education and modeling automation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.