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Abstract

The aim of this study is to investigate the automatic recognition and analysis of Jeju marine-life images using artificial

intelligence (AI) technology. The dataset of marine-life images was prepared using tools such as Python, TensorFlow, and

Google Colab (Google Colaboratory). We also developed models by training deep learning AI in image recognition to

automatically recognize the species found in these images and extract their associated information, such as taxonomy,

characteristics, and distribution. This study is innovative in that it uses deep learning technology combined with image-

recognition technology for marine biodiversity research. In addition, these results will lead to the development of the marine-life

industry in Jeju by supporting marine environment monitoring and marine resource conservation. Furthermore, this study is

anticipated to contribute to academic advancement, specifically in the study of marine species diversity.

Index Terms: Jeju, Marine Life Image Analysis, Generative AI Technology, Species Identification, Geographical Distribution

I. INTRODUCTION

Deep learning, a field of artificial intelligence (AI) research,

is a subset of machine learning that mimics the behavior of

the human brain to perform data clustering and enables pre-

dictive analysis through the learning process [1]. This tech-

nology has garnered significant attention in the computing

domain owing to its robust learning capabilities, and has been

widely applied in various fields, such as healthcare, visual

recognition, text analysis, and cybersecurity [2]. Additionally,

the accessibility of open-source sharing allows for rapid

improvement and optimization, thereby accelerating overall

development [3].

Recognition technology, a fundamental aspect of AI, gener-

ally refers to the technology designed to identify objects

through images [4]. The global AI market is expected to reach

$36.8 billion by 2025, with the image recognition and tagging

segment anticipated to reach approximately $8.1 billion [5].

With the advent of the bioeconomic era, which seeks to

solve future human problems, the convergence of technolo-

gies that utilize AI is becoming increasingly important in the

development of marine biotechnology [6,7].

Against the backdrop of these developments, Jeju Island

announced its “Jeju Bio-Industry Development Strategy” in

June 2023, expressing its intention to strengthen the competi-

tiveness of the marine bio-industry, through which it seeks to

create new added value and strengthen the marine bio-indus-

try [8]. Jeju Island, which occupies approximately 25% of the

Republic of Korea’s waters, possesses diverse and abundant

marine biological resources that offer significant potential for

the bio-industry [9]. However, the growth of the bio-industry

lags behind that of other regions because of a lack of technol-

ogy and skilled manpower [10].

This paper presents a plan to develop an automatic recogni-
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tion and analysis platform for domestic marine biological

resources using Python and TensorFlow. This platform inte-

grates image-recognition technology and AI learning by

extracting data on ten species of fish and ten species of sea-

weed inhabiting Jeju from the National Marine Biological

Resources Center [11]. This initiative is expected to promote

the revitalization of Jeju’s marine bio-industry. Additionally,

this research is anticipated to contribute to the management of

marine resources and conservation of living organisms and

ecosystems by supporting marine environmental monitoring.

II. RELATED WORKS

Among existing studies, examples of image-recognition

technology using deep learning include the classification of

red-tide organism images using open-source deep learning

and the classification of rock images using a TensorFlow-

based convolutional neural network (CNN) [12,13].

The classification of red-tide organism images was imple-

mented using the TensorFlow framework and Google’s image

classification model. In this study, 782 images of 13 species

of red-tide organisms found along the coast of the Republic

of Korea were selected and classified. The previous CNN

model was retrained using TensorFlow to classify the images

[12].

Subsequently, rock image classification was conducted

using TensorFlow and a CNN inception model. This study

followed a similar approach to red-tide organism image clas-

sification. In this study, images of 16 rock types from a high

school curriculum were generated, a dataset of 734 instances

was created, and a fine-tuned learning method was applied.

The image files were then converted to the TFRecord format

for use as a training dataset in TensorFlow.

Consequently, a rock classification system was developed

by adapting a trained model for mobile use using fine-tuning

methods and TensorFlow Android [13]. Open-source deep

learning and image-recognition technologies are used in var-

ious industries. Nevertheless, the analysis of marine life

using existing image-recognition technologies exhibits low

accuracy owing to uncontrollable factors, such as season,

weather, water depth, and complex marine environments

[14].

Furthermore, the image classification performance is

expected to be further improved by removing image noise

and applying additional training datasets that are suitable for

the model.

Therefore, in this study, Python was used to perform image

preprocessing and a deep learning model was built and trained

using TensorFlow. We propose an image-recognition technol-

ogy that overcomes the limitations of existing research and

maintains high accuracy, even in more complex environments.

III. SYSTEM MODEL AND METHOD

A. Research Tools and System Structure

Fig. 1 shows the structure of MobileNetV2 used in this

study. MobileNetV2 is a CNN-based model that extracts

image features by combining convolutional and pooling lay-

ers [15]. TensorFlow, an open-source library developed by

Google, is an effective research tool for building artificial

neural networks, including CNNs and deep learning models

[16]. In our study, we used TensorFlow to build a machine

learning system based on artificial neural networks.

The proposed marine-life recognition system consists of

dataset construction, model learning, image classification analy-

sis, and output steps, as shown in Fig. 2. In the dataset con-

struction stage, marine-life image data were collected and

preprocessed, and the size of the learning dataset was increased

through data augmentation. In the model training phase, Ten-

sorFlow was used to retrain the pretrained image classifica-

tion model, monitor cross-entropy and accuracy, and evaluate

the model’s performance. In the final image classification

analysis and output step, the top three classes of prediction

results were analyzed, and the results were output using a dic-

tionary in which the corresponding biological information was

defined.

Fig. 1. Convolutional Neural Network (CNN) model structure.

Fig. 2. System structure flowchart.
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B. Dataset Creation

1) Data Collection

The scope of the study’s dataset was limited to Jeju Island

waters, and the top 10 fish and seaweed species were selected

based on the occurrence scores of marine life provided by

the National Marine Biological Resources Institute. Conse-

quently, images of 20 marine-life species were collected, and

930 datasets were constructed. Table 1 summarizes the 20

marine-life image datasets used in this study.

2) Data Preprocessing

To input the collected data into the image classification

model, image files were loaded from the saved locations, and

preprocessing was performed on the loaded images. For pre-

processing, images of various sizes and resolutions were con-

verted to 224 pixels horizontally and vertically, and adjusted

to have RGB color channels.

3) Data Augmentation

In this study, we applied data augmentation techniques to

increase the size of the dataset to 3,200. The data augmenta-

tion techniques included random rotation up to 40o, image

enlargement and reduction up to 0.7-1.3 times, random trans-

lation up to 20% each in the vertical direction, shear defor-

mation up to 20o, horizontal inversion, and vertical inversion.

The data augmentation method utilizes ImageDataGenerator

to augment images in real time and provide them to the

model by location [17]. These augmented data were included

in both the training and validation datasets and used to train

the model. Fig. 3 shows a visualization of the image using

each data augmentation technique applied through Image-

DataGenerator.

C. Model Training

In the model-learning stage, the preprocessed image data

were applied to the pretrained image classification model to

retrain it for marine-life image recognition. We aimed to pre-

vent information loss from image data and increase feature

extraction and learning efficiency using a CNN model

instead of the existing Deep Neural Network model, which

can cause spatial information loss [18].

In this study, we selected a transfer-learning method and

used three models: MobileNetV2, InceptionV3, and Xcep-

tion. Typically, the lower layers of the model learn the uni-

versal features of the image, and the upper layers learn the

abstract features [19]. Considering these characteristics, we

fixed the weights of the lower layers of each model and fine-

tuned them by adding a dense layer to the upper layers [20].

Using transfer learning and fine-tuning, the trained model

was adjusted to include 20 classification layers. In other

words, the existing model loaded through transfer learning

was fine-tuned to the marine-life image classification task to

minimize loss during learning and increase data efficiency.

To select the optimal model specialized for marine-life

recognition, each model was trained ten times, and the accu-

racies were compared. The model with the best performance

was selected for further training.

While monitoring the learning process, we calculated the

categorical cross-entropy and accuracy by comparing the

predicted and actual values   and applied them to the valida-

Table 1. Jeju marine species dataset

Marine Species Marine Organisms Quantity

Fish

Odontamblyopus lacepedii 53

Dictyosoma burgeri 45

Pseudopleuronectes yokohamae 48

Branchiostegus japonicus 45

Cleisthenes pinetorum 46

Ostorhinchus semilineatus 45

Scomber japonicus 45

Pleuronichthys cornutus 45

Setipinna tenuifilis 45

Takifugu niphobles 45

Seaweed

Cladophora wrightiana var. minor 45

Ulva australis 46

Padina arborescens 45

Undaria pinnatifida 46

Gelidium elegans 47

Sargassum thunbergii 53

Codium fragile 50

Sargassum fusiforme 45

Ishige okamurae 46

Colpomenia sinuosa 45

Total Quantity 930

Fig. 3. Marine-life images using data augmentation
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tion data. Based on cross-entropy and accuracy, the trained

model was evaluated using validation data to estimate the

generalization ability of the model and to detect and adjust

for overfitting. After completing model tuning, we performed

a final evaluation of the model by comparing its accuracy

with the training and testing data.

To evaluate the model performance, the marine-life image

dataset was structured as shown in Table 2.

Table 2 shows the quantities of training, validation, and

test data. The training data for retraining the image classifi-

cation model comprised 81% of the dataset. The validation

data used to estimate the generalization ability of the model

consisted of 9% of the dataset. Finally, the test data used to

evaluate the performance of the image classification model

consisted of 10% images for each marine species through

hierarchical sampling. At this time, data augmentation was

not applied to the test data; therefore, testing was performed

with 93 original images, corresponding to 10% of the total

dataset. The number of images for each marine species

included in the test data is presented in Table 3.

D. Image Classification Analysis and Output

The final image classification analysis and output step used

a dictionary containing mapping information between the

images and data based on accuracy. The system is designed to

verify the characteristics and distribution information of organ-

isms by combining them with a dictionary when the results

are output.

IV. RESULTS

Fig. 4 shows the results of repeatedly training the marine

life dataset using MobileNetV2, InceptionV3, and Xception,

ten times each.

According to the graph, MobileNetV2 (60%), Xception

(54%), and InceptionV3 (34%) exhibited improved perfor-

mance. Among them, MobileNetV2 showed the highest

accuracy of 60%, and the difference in accuracy between the

models can be attributed to the structural characteristics of

each model [21,22,23].

Fig. 5 shows the structural diagrams of MobileNetV2,

InceptionV3, and Xception. First, Fig. 5(a) shows the struc-

ture of the MobileNetV2 model. MobileNetV2 uses an inverse

residual technique to improve the accuracy by combining

layer information. The use of depthwise separable convolu-

tions and techniques to reduce the number of parameters to be

optimized has proven to be effective in terms of efficiency by

reducing the number of parameters and number of computa-

tions required [21]. Fig. 5(b) shows the structure of Incep-

tionV3. InceptionV3 uses an inception block layer. The layer

Fig. 5. Structural diagram of each model. (a) MobileNetV2, (b) InceptionV3,
and (c) Xception.

Fig. 4. Model comparison.

Table 2. Number of images of learning data, verification data, and test data

Category
Training Data 

(81%)

Validation Data 

(9%)

Testing Data 

(10%)

Original image 754 83 93

Augmented data image 2880 320 93

Table 3. Test data quantity by marine organism

Marine Life Quantity Marine Life Quantity

Ulva australis 5 Undaria pinnatifida 5

Codium fragile 5 Sargassum thunbergii 5

Ishige okamurae 5 Setipinna tenuifilis 5

Odontamblyopus lacepedii 5 Dictyosoma burgeri 4

Branchiostegus japonicus 5 Sargassum fusiforme 4

Gelidium elegans 5 Ostorhinchus semilineatus 4

Pleuronichthys cornutus 5 Scomber japonicus 4

Colpomenia sinuosa 5 Padina arborescens 4

Cleisthenes pinetorum 5
Cladophora wrightiana var. 

minor
4

Pseudopleuronectes 

yokohamae
5 Takifugu niphobles 4
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consists of parallel convolutional branches with filters of dif-

ferent sizes, and additional processing occurs in the connected

branch stages, resulting in more parameters and greater com-

putational complexity than MobileNetV2 [22]. Finally, Fig.

5(c) shows the structure of Xception. Xception uses layers of

depthwise separable convolutions and point-wise convolu-

tions, and a data normalization technique that changes based

on the input scale. Because an additional depth-specific con-

volution is used after the depth-separable convolution layer,

the model’s representation power and computational cost

increase compared to those of MobileNetV2 [23].

In other words, MobileNetV2 is designed for efficient

computation, and among the three models presented above, it

is efficient in many aspects, including parameters, computa-

tional efficiency, and number of parameters. However, the

Xception and InceptionV3 models use deeper and more com-

plex architectures and additional layers, resulting in many

more parameters, longer computation times, and lower effi-

ciency. Therefore, we conducted additional training using

MobileNetV2, which exhibited the highest accuracy.

To determine the appropriate learning number for the

selected MobileNetV2 model, an iterative learning process

was performed 10-200 times, and the accuracy was the high-

est when performed 100 times. Because there was no signifi-

cant difference in the number of training repetitions and

accuracy, we conducted a study on a model that was trained

100 times.

As a result of monitoring the learning process of the model,

the cross-entropy and accuracy graphs are shown in Fig. 6(a).

Fig. 6. Comparison of cross-entropy and accuracy graphs based on the
presence or absence of dropout. (a) represents the state before the

application of dropout, and (b) depicts the state after the incorporation of
dropout.

Table 4. Trained image test results

Marine Species Marine Life Accuracy(%)

Fish

Odontamblyopus lacepedii 89.0

Dictyosoma burgeri 94.8

Pseudopleuronectes yokohamae 89.2

Branchiostegus japonicus 98.8

Cleisthenes pinetorum 69.8

Ostorhinchus semilineatus 88.0

Scomber japonicus 100.0

Pleuronichthys cornutus 85.2

Setipinna tenuifilis 91.8

Takifugu niphobles 100

Mean Accuracy (Fish) 90.7

Seaweed

Cladophora wrightiana var. minor 72.5

Ulva australis 80.0

Padina arborescens 92.0

Undaria pinnatifida 91.4

Gelidium elegans 96.6

Sargassum thunbergii 69.4

Codium fragile 83.6

Sargassum fusiforme 94.8

Ishige okamurae 80.2

Colpomenia sinuosa 97.4

Mean Accuracy (Seaweed) 85.8

Total Accuracy (Fish and Seaweed) 88.3

Table 5. Untrained image test results

Marine Species Marine Organisms Accuracy(%)

Fish

Odontamblyopus lacepedii 49.4

Dictyosoma burgeri 65.23

Pseudopleuronectes yokohamae 65.6

Branchiostegus japonicus 90.2

Cleisthenes pinetorum 59.4

Ostorhinchus semilineatus 63.0

Scomber japonicus 99.5

Pleuronichthys cornutus 30.2

Setipinna tenuifilis 62.4

Takifugu niphobles 97.75

Mean Accuracy (Fish) 68.3%

Seaweed

Cladophora wrightiana var. minor 44.0

Ulva australis 73.4

Padina arborescens 67.8

Undaria pinnatifida 91.2

Gelidium elegans 70.8

Sargassum thunbergii 79.4

Codium fragile 57.4

Sargassum fusiforme 67.5

Ishige okamurae 38.0

Colpomenia sinuosa 57.8

Mean Accuracy (Seaweed) 64.7

Total Accuracy (Fish and Seaweed) 66.5
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In the graph, the cross-entropy and accuracy of the validation

data were not consistent with those of the training data. This

revealed an overfitting problem in the model-learning process

for marine-life images. To solve this overfitting problem, we

used a dropout to disable some neurons. Consequently, Fig.

6(b) confirms that the cross-entropy and accuracy of the vali-

dation data followed the cross-entropy and accuracy of the

training data, thereby mitigating overfitting.

Tables 4 and 5 show the image test results with and with-

out training. The trained image tests were randomly selected

and adjusted according to the number of test data points for

each marine creature. Table 4 shows the average accuracy

for the selected data. Additionally, Table 5 shows the untrained

test results obtained from average accuracy of the pre-seg-

mented test data.

The trained image tests had average accuracies of 90.7 and

85.8% for fish and seaweed, respectively. Mackerel and

pufferfish had the highest accuracy among fish, with 100%

accuracy. Among algae, round horses had the highest accu-

racy, with 97.4% accuracy.

The untrained image test achieved an average accuracy of

68.3% for fish and 64.7% for seaweed. Among the fish test

data, mackerel had the highest accuracy of 99.5%, whereas

among the seaweed test data, the highest accuracy was

91.2%. Comparing Tables 4 and 5, the accuracy of the test

image set (66.5%) is lower than that of the trained image set

(85.8%).

Table 6 presents the Normalized Confusion Matrix results

in tabular form. Based on the relationship between the actual

and predicted classes, we analyzed the classification patterns

of marine organisms and evaluated the performance of the

model by determining the type and frequency of misclassifi-

cation of certain marine organisms as different species.

The analysis showed that among fish species, certain

classes of Branchiostegus japonicus, Scomber japonicus, and

Takifugu niphobles had a classification accuracy of 1.0. How-

ever, some classes, such as Cleisthenes pinetorum, Dictyo-

soma burger, and Odontamblyopus lacepedii, were misclassified.

In particular, Cleisthenes pinetorum had an accuracy of 0.8,

whereas the remaining 0.2% were incorrectly classified as

Pseudopleuronectes yokohamae. Additionally, for Pleuronich-

thys cornutus, Pseudopleuronectes yokohamae was misclassi-

Table 6. Normalized confusion matrix (See Appendix 1)

Marine Species

Marine Life

Actual Class Predicted Class 

Correctly classified Accuracy Misclassified Accuracy

Fish

Branchiostegus japonicus Branchiostegus japonicus 1.0

Cleisthenes pinetorum Cleisthenes pinetorum 0.8 Pseudopleuronectes yokohamae 0.2

Dictyosoma burgeri Dictyosoma burger 0.75 Odontamblyopus lacepedii 0.25

Odontamblyopus lacepedii Odontamblyopus lacepedii 0.6
Branchiostegus japonicus 0.2

Ishige okamurae 0.2

Ostorhinchus semilineatus Ostorhinchus semilineatus 0.75 Gelidium elegans 0.25

Pleuronichthys cornutus Pleuronichthys cornutus 0.4 Pseudopleuronectes yokohamae 0.6

Pseudopleuronectes yokohamae Pseudopleuronectes yokohamae 0.8 Cleisthenes pinetorum 0.2

Scomber japonicus Scomber japonicus 1.0

Setipinna tenuifilis Setipinna tenuifilis 0.8 Scomber japonicus 0.2

Takifugu niphobles Takifugu niphobles 1.0

Seaweed

Cladophora wrightiana var. minor Cladophora wrightiana var. minor 0.25
Gelidium elegans 0.5

Sargassum thunbergia 0.25

Codium fragile Codium fragile 0.8 Undaria pinnatifida 0.2

Colpomenia sinuosa Colpomenia sinuosa 0.6
Padina arborescens 0.2

Sargassum thunbergia 0.2

Gelidium elegans Gelidium elegans 0.8 Ishige okamurae 0.2

Ishige okamurae Ishige okamurae 0.6
Gelidium elegans 0.2

Sargassum fusiforme 0.2

Padina arborescens Padina arborescens 0.75 Odontamblyopus lacepedii 0.25

Sargassum fusiforme Sargassum fusiforme 0.75 Ulva australis 0.25

Sargassum thunbergii Sargassum thunbergia 0.8 Undaria pinnatifida 0.2

Ulva australis Ulva australis 0.8 Colpomenia sinuosa 0.2

Undaria pinnatifida Undaria pinnatifida 1.0
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fied with an accuracy of 0.6, indicating a higher accuracy than

the true class.

For seaweed species, the specific class Undaria pinnatifida

had a classification accuracy of 1.0. However, some classes,

such as Codium fragile, Padina arborescens, and Colpomenia

sinuosa, tended to be confused with other classes. Unlike

fish species, which showed an overall high classification

accuracy, seaweed species had a lower classification accu-

racy and were more often confused with classes other than

those of fish species. Cladophora wrightiana var. For the

minor class, the accuracy was 0.25, indicating the lowest

classification accuracy among the seaweed classes. Of these,

0.5 were misclassified as Gelidium elegans and 0.25 as Sar-

gassum thunbergia.

Fig. 7 shows the application prediction screen implemented

using the final model. When a user uses an application camera

to capture marine life, the images are fed into the model, and

the best matching classes are analyzed in real time, providing

the user with the species name, biological characteristics, and

distribution information.

V. DISCUSSION AND CONCLUSIONS

In this study, we investigated a method for recognizing

Jeju marine-life images using open-source deep learning. For

this purpose, the learning dataset used in the study was col-

lected from ten species of fish and seaweed and consisted of

930 images of Jeju marine life. Preprocessing was performed

on the collected image data, and all images were converted

to the same resolution and color channels. After the prepro-

cessing step, the existing CNN model was retrained using

the TensorFlow framework to render it suitable for marine-

life image recognition. The highest accuracy was achieved

when the number of learning iterations was 100, which

required approximately 43 min.

In this study, we compared the performances of three mod-

els −MobileNetV2, InceptionV3, and Xception− and selected

a suitable model for marine-life classification. Additional

training was performed based on the selected model to esti-

mate its generalization ability and to adjust for overfitting.

After tuning, the final model was evaluated by testing it on

trained and untrained datasets. The average accuracies of the

trained and untrained image datasets were 85.8 and 66.5%,

respectively. Thus, we confirmed that the trained data showed

a higher classification accuracy than the untrained data.

The difference in performance between the two datasets

occurs because the model is over-optimized on the training

data and does not generalize well to the test images. Dropout

was applied to solve this overfitting problem; however, it

only alleviated overfitting and did not achieve complete gen-

eralization. This is because the amount of learning data is

insufficient owing to the nature of marine life, and the recog-

nition rate decreases depending on the environment. In par-

ticular, the limited amount of training data makes it difficult

for the model to sufficiently learn all possible scenarios. To

address this limitation, it is essential to build a systematic

class-selection system that incorporates additional training

data based on generative adversarial networks (GANs) [24].

Additionally, an algorithm that can accurately distinguish

marine life must be developed by analyzing the correlation

between the classification within an image and the environ-

mental context [25].

In conclusion, if a marine-life identification system is

implemented through this process, it is expected that the lim-

itations of Jeju Island's existing marine biotechnology will

improve and that it will expand to various industrial fields

on Jeju Island in the future [26].
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