• 제목/요약/키워드: Generative AI type classification

검색결과 3건 처리시간 0.015초

생성형 AI에 대한 아동들의 인식 연구 : 유형과 속성 분류를 중심으로 (Children's Perception of Generative AI : Focusing on Type and Attribute Classification)

  • 장수용;한지수;신효림;오창훈
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.591-601
    • /
    • 2024
  • 아동 사용자를 대상으로 한 생성형 AI 기반 교육 콘텐츠와 서비스가 급증함에 따라 생성형 AI에 대한 아동의 인식과 관련된 연구의 필요성이 증가하고 있다. 이에 본 연구는 아동이 인식하는 생성형 AI의 유형 분류, 인지적, 행동적, 감정적 속성 부여 여부를 파악하고자 하였다. 이를 파악하기 위해 아동들과 함께 생성형 AI를 이용해 동화책을 생성해보는 워크샵을 진행하고, 반구조화 인터뷰와 그림 그리기를 통한 응답을 수집하였다. 그 결과 아동들은 생성형 AI를 인지적 수준이 높은 인공물로 여겼지만, 생성형 AI를 통해 창작되는 결과물에 의존한 유형 분류의 모습을 보였다.

적대적 생성 신경망 기반 비공기압 타이어 디자인 시스템 (Non-pneumatic Tire Design System based on Generative Adversarial Networks)

  • 성주용;이현준;이성철
    • Journal of Platform Technology
    • /
    • 제11권6호
    • /
    • pp.34-46
    • /
    • 2023
  • 자동차 타이어의 휠과 트레드 사이에 탄성중합체 또는 다각형의 스포크를 채우는 방식으로 제작하는 비공기압 타이어는 자동차 관련 학계 및 항공우주 업계의 중요한 연구 주제가 되고 있다. 본 연구에서는 생성형 적대 신경망을 기반으로 비공기압 타이어 디자인을 생성하는 시스템 개발했다. 특히 비공기압 타이어의 종류와 사용 환경, 제작 방식, 공기압 타이어와의 차이점 그리고 스포크 디자인에 따른 하중 전달의 변화 등 디자인에 영향을 미칠만한 변수들에 대한 조사를 실시했다. 이 연구는 OpenCV를 통해 다양한 스포크 형태의 이미지를 만들고, projected GANs에 학습시켜 비공기압 타이어 디자인에 사용될 스포크를 생성했다. 디자인된 비공기압 타이어는 사용 가능 및 불가능으로 레이블링하고, 이를 Vision Transformer 이미지 분류 AI 모델에 학습시켜 분류하도록 하였다. 최종적으로 분류 모델의 평가를 통해 0에 가까운 loss의 수렴, 99%의 정확도를 확인했다. 차후 도형 및 스포크 이미지와 알고리즘을 이용한 디자인이 아닌, 완전 자동화 시스템의 개발과 더 나아가 3D의 물리적 해석 없이 사용 가능한 디자인을 생성하는 것을 목표로 한다.

  • PDF

Research on the Design of a Deep Learning-Based Automatic Web Page Generation System

  • Jung-Hwan Kim;Young-beom Ko;Jihoon Choi;Hanjin Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.21-30
    • /
    • 2024
  • 본 연구는 폭증하는 디지털 비즈니스의 수요 증가를 감당하기 위하여 AI를 활용한 새로운 제작 방법을 모색하는데 목적이 있다. 이에 딥러닝과 빅데이터를 기반으로 실제 웹페이지 생성 가능 시스템을 구축하고자 하였다. 첫째, 이커머스 웹사이트 기능을 바탕으로 분류체계를 수립하였다. 둘째, 웹페이지 구성요소의 유형을 체계적으로 분류하였다. 셋째, 딥러닝이 적용가능한 웹페이지 자동생성시스템 전체를 설계하였다. 실제 데이터를 학습하여 구현된 딥러닝 모델이 기존 웹사이트를 분석하고 자동생성되도록 재설계 함으로써, 산업에서 바로 사용가능한 방안을 제안했다. 나아가 체계가 부족했던 웹사이트 레이아웃 및 특징에 대한 분류체계를 수립했다는 측면에서 의의가 있다. 이는 향후 생성형 AI 기반의 웹사이트 연구 및 산업 분야에 크게 기여할 수 있을 것이다.