• 제목/요약/키워드: Generation system

검색결과 11,236건 처리시간 0.041초

400W 수직형 풍력발전시스템의 개발에 관한 연구 (A Study on Development of Wind Power 400W Generation System with Vertical axis Type)

  • 윤정필;최장균;차인수
    • 신재생에너지
    • /
    • 제2권3호
    • /
    • pp.23-30
    • /
    • 2006
  • Need developments of substitute energy to solve problem of global warming by excess use of fossil energy, excess discharge of carbon dioxide. wind power generation system is all-important energy in next generation as clean energy. Environmental pollution of wind power generation system is not exhausted entirely. And, electric-power generation system cost is cheap than other energy. Wind Generation system that is supplied much present is most horizontality style blade structure. But, Horizontal style structure is serious noise and there is problem in stability of blade. We designed special blade solve to this problem. And, manufactured vertical axis wind power generation system because using blade. Also, developed assistance power generator to increase driving efficiency ago wind power generation. We expect this devices that is such cover shortcoming of wind power generation system.

  • PDF

다양한 기상조건하에서의 AF기능을 갖는 태양광발전시스템의 출력제어 시뮬레이션 (Output Control Simulation of PV-AF Generation System under Various Weather Conditions)

  • 성낙권;박민원;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1364-1366
    • /
    • 2002
  • The Photovoltaic(PV) generation system is a promising source of energy for the future. Since the need for renewable energy has been increased, the research of PV generation system has also been progressed. Recently, cost down of PV generation system has been accomplished and practical technologies of the solar energy developed, Moreover, grid connected PV generation system are becoming actual and general. Operational technology of the grid connected PV generation system is being a hot issue. Power output of PV system is directly affected by wether conditions. When AC power supply is needed, power conversion by an inverter and a MPPT control are necessary. In this paper, for stability improvement of PV generation system. Active filter(AF) function is added to PV generation system, and simulations of PV-AF system under various weather conditions are performed.

  • PDF

Estimating the Loss Ratio of Solar Photovoltaic Electricity Generation through Stochastic Analysis

  • Hong, Taehoon;Koo, Choongwan;Lee, Minhyun
    • Journal of Construction Engineering and Project Management
    • /
    • 제3권3호
    • /
    • pp.23-34
    • /
    • 2013
  • As climate change and environmental pollution become one of the biggest global issues today, new renewable energy, especially solar photovoltaic (PV) system, is getting great attention as a sustainable energy source. However, initial investment cost of PV system is considerable, and thus, it is crucial to predict electricity generation accurately before installation of the system. This study analyzes the loss ratio of solar photovoltaic electricity generation from the actual PV system monitoring data to predict electricity generation more accurately in advance. This study is carried out with the following five steps: (i) Data collection of actual electricity generation from PV system and the related information; (ii) Calculation of simulation-based electricity generation; (iii) Comparative analysis between actual electricity generation and simulation-based electricity generation based on the seasonality; (iv) Stochastic approach by defining probability distribution of loss ratio between actual electricity generation and simulation-based electricity generation ; and (v) Case study by conducting Monte-Carlo Simulation (MCS) based on the probability distribution function of loss ratio. The results of this study could be used (i) to estimate electricity generation from PV system more accurately before installation of the system, (ii) to establish the optimal maintenance strategy for the different application fields and the different season, and (iii) to conduct feasibility study on investment at the level of life cycle.

ESTIMATING THE LOSS RATIO OF SOLAR PHOTOVOLTAIC ELECTRICITY GENERATION THROUGH STOCHASTIC ANALYSIS

  • Taehoon Hong;Choongwan Koo;Minhyun Lee
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.375-385
    • /
    • 2013
  • As climate change and environmental pollution become one of the biggest global issues today, new renewable energy, especially solar photovoltaic (PV) system, is getting great attention as a sustainable energy source. However, initial investment cost of PV system is considerable, and thus, it is crucial to predict electricity generation accurately before installation of the system. This study analyzes the loss ratio of solar photovoltaic electricity generation from the actual PV system monitoring data to predict electricity generation more accurately in advance. This study is carried out with the following five steps: (i) Data collection of actual electricity generation from PV system and the related information; (ii) Calculation of simulation-based electricity generation; (iii) Comparative analysis between actual electricity generation and simulation-based electricity generation based on the seasonality; (iv) Stochastic approach by defining probability distribution of loss ratio between actual electricity generation and simulation-based electricity generation ; and (v) Case study by conducting Monte-Carlo Simulation (MCS) based on the probability distribution function of loss ratio. The results of this study could be used (i) to estimate electricity generation from PV system more accurately before installation of the system, (ii) to establish the optimal maintenance strategy for the different application fields and the different season, and (iii) to conduct feasibility study on investment at the level of life cycle.

  • PDF

An Experimental Study on a Windheat Generation System with a Savonius Wind Turbine

  • Kim, Young-Jung;Ryou, Young-Sun;Kang, Geum-Choon;Paek, Yee;Yun, Jin-Ha;Kang, Youn-Ku
    • Agricultural and Biosystems Engineering
    • /
    • 제6권2호
    • /
    • pp.65-69
    • /
    • 2005
  • A windheat generation system with a Savonius windturbine was developed and the performance was evaluated through field tests. The system consisted of a heat generation drum, heat exchanger, water storage tank, and two circulation pumps. Frictional heat is created by rotation of a rotor inside the drum containing thermo oil, and was used to heat water. In order to estimate the capacity of this windheat generation system, weather data was collected for one year at the site near the windheat generation system. Wind Power from the savonius wind turbine mill was transmitted to the heat generation system with an one-to-three gear system. Starting force to rotate the savonius wind turbine and the whole system including the windheat generation system were 1.0 and 2.5 kg, respectively. Under the outdoor wind condition, maximum speed of the rotor in the drum was 75rpm at wind speed 6.5 m/sec, which was not fast enough to produce heat for greenhouse heating. Annual cumulative hours for wind speeds greater than 5 m/sec at height of 10, 20, 30 m were 190, 300 and 1020 hrs, respectively. A $5^{\circ}C$ increase in water temperature was achieved by the windheat generation system under the tested wind environment.

  • PDF

복합발전 풍력-디젤 하이브리드 시스템 설치 지역의 전력품질 분석 (Power Quality Analysis of Wind-Diesel Hybrid Generation System Installation Area)

  • 안해준;김현구;김석우;고석환;장길수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.539-541
    • /
    • 2009
  • A severely cold weather condition of King Sejong Station, Antarctica becomes a very severe condition for an installation/operation of wind generation system. When the existing wind generation system works, it may cause a damage and destruction of wind generation system and can bring about big problems in terms of the power quality. Accordingly, it is essential to obtain technologies for the installation and operation of small wind generation system for the polar region's wind generation, and to assess and demonstrate the performance in the severely-cold environment and the polar wind generation system's development, supplementation, alteration. Also, as the available power of King Sejong Station, Antarctica, the diesel generator has been mainly used, and the wind generator has been used in the hybrid form. Wind generation and diesel generation has the different load following control each other. In the wind generation, the generated power very rapidly changes according to the change of the velocity of the wind. On the other hand, the diesel generation shows very gentle change in the velocity of output. Therefore, the study is intended to analyze the 10kw small wind generator-diesel generator's power quality of King Sejong Station, Antarctica, which is the hybrid system installation area.

  • PDF

Analysis of System Impact of the Distributed Generation Using EMTP with Particular Reference to Voltage Sag

  • Yeo, Sang-Min;Kim, Chul-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권3호
    • /
    • pp.122-128
    • /
    • 2004
  • With the advent of distributed generation, power systems are fundamentally impacted in regards to stability and power quality. Distributed generation has a positive impact on system restoration following a fault, higher reliability, and mitigation of effect due to voltage sag. However, distributed generation also has a negative impact on decrease of reliability such as changes of protective device setting and mal-operation. Because bulk power systems consist of various sources and loads, it becomes complicated to analyze a power system with distributed generation. The types of distributed generation are usually classified by both rotating machinery and the inverter-based system. In this paper, distributed generation is designed by rotating machinery, and the distributed system having a model of the distributed generation is simulated using EMTP. In addition, this paper presents the simulation results according to the types of distributed generation.

Analysis of the System Impact of Distributed Generation using EMTP

  • Yeo, Sang-Min;Kim, Il-Dong;Kim, Chul-Hwan;Aggarwal, Raj
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권4호
    • /
    • pp.201-206
    • /
    • 2004
  • With the advent of distributed generation, power systems in general are impacted in regards to stability and power quality. Distributed generation has positive impacts on system restoration following a fault, higher reliability, and mitigation of effect due to voltage sag. However, distributed generation also has negative impacts on the decrease of reliability such as changes of protective device setting and mal-operation. Because bulk power systems consist of various sources and loads, it is complicated to analyze power systems that have distributed generation. The types of distributed generation usually are classified as the rotating machinery system and the inverter-based system. In this paper, distributed generation is designed as a synchronous generator, and the distribution system with its distributed generation model is simulated using EMTP. In addition, this paper shows the simulation results according to the types of distributed generation

3차원 캐릭터 모델기반 CGS System 구축 I (Part1:Non-Digital Process에 관하여) (CGS System based on Three-Dimensional Character Modeling I (Part1:About Non-Digital Process))

  • 조동민
    • 한국멀티미디어학회논문지
    • /
    • 제11권11호
    • /
    • pp.1592-1600
    • /
    • 2008
  • 본 연구는 '캐릭터 구성 이미지 요소들의 재구성'이라는 논제를 바탕으로 하여 창의적 아이디어 발상을 돕기 위한 연구로 형태 이미지 요소들의 조합을 컴퓨팅 형태 생성에 의한 독창적이고 다양한 이미지 생성을 목적으로 하였다. 기존의 아이디어 발상법에서 벗어나 창의적 형태발상능력을 극대화시키고 사고의 한계를 극복하기 위한 디자인 발상법을 제시하기 위하여 창의적 아이디어 발상법에 대한 선행연구 중 비례를 이용한 기존 시스템인 PDS(Proportion Distort System) 아이디어 발상법의 문제점을 파악하여 보완한 창의적 아이디어 발상법인 CGS(Character Generation System)를 제시하였다. 본 연구는 영상 3D 캐릭터 디자인 개발프로세스 중 아이디어발상 또는 창조적인 이미지발상지원에 대한 한 방법으로 그 효과가 있을 것이며, 다양한 아이디어를 만들어 낼 수 있어 형태발상의 한계점을 극복할 수 있는 보조역할을 할 수 있을 것이라 기대된다.

  • PDF

마이크로터빈발전시스템 독립운전을 위한 동적 모델링 (Dynamic Model of Microturbine Generation System for Stand-Alone Mode Operation)

  • 조재훈;홍원표
    • 조명전기설비학회논문지
    • /
    • 제23권12호
    • /
    • pp.210-216
    • /
    • 2009
  • 마이크로그리드는 전력시스템의 계획 및 실시간 운영에 있어서 매우 큰 영향을 미치며 중요한 역할을 할 것으로 판단된다. 따라서 본 연구에서는 빌딩의 마이크로그이드의 중요한 마이크로소오스인 마이크로터빈 발전시스템의 Matlab/Simulink 모델과 전압-주파수제어기를 개발하였다. 또한 부하에 독립적으로 전원을 공급하기 위한 전력시스템을 구성, 모의를 통하여 MTG시스템의 특성을 분석하였다.